The ubiquity of communication devices such as smartphones has led to the emergence of context-aware services that are able to respond to specific user activities or contexts. These services allow communication providers to develop new, added-value services for a wide range of applications such as social networking, elderly care, and near-emergency early warning systems. At the core of these services is the ability to detect specific physical settings or the context a user is in, using either internal or external sensors. For example, using built-in accelerometers it is possible to determine if a user is walking or running at a specific time of day. By correlating this knowledge with GPS data it is possible to provide specific information services to users with similar daily routines. This article presents a survey of the techniques for extracting this activity information from raw accelerometer data. The techniques that can be implemented in mobile devices range from classical signal processing techniques such as FFT to contemporary string-based methods. We present experimental results to compare and evaluate the accuracy of the various techniques using real data sets collected from daily activities.
Performing business process analysis in healthcare organizations is particularly difficult due to the highlydynamic, complex, ad-hoc, and multi-disciplinary nature of healthcare processes. Process mining is a promising approach to obtain a better understanding about those processes by analyzing event data recorded in healthcare information systems. However, not all process mining techniques perform well in capturing the complex and ad-hoc nature of clinical workflows. In this work we introduce a methodology for the application of process mining techniques that leads to the identification of regular behavior, process variants, and exceptional medical cases. The approach is demonstrated in a case study conducted at a hospital emergency service. For this purpose, we implemented the methodology in a tool that integrates the main stages of process analysis. The tool is specific to the case study, but the same methodology can be used in other healthcare environments.
Abstract. Existing process mining techniques are able to discover process models from event logs where each event is known to have been produced by a given process instance. In this paper we remove this restriction and address the problem of discovering the process model when the event log is provided as an unlabelled stream of events. Using a probabilistic approach, it is possible to estimate the model by means of an iterative Expectaction-Maximization procedure. The same procedure can be used to find the case id in unlabelled event logs. A series of experiments show how the proposed technique performs under varying conditions and in the presence of certain workflow patterns. Results are presented for a running example based on a technical support process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.