This study aims at presenting a reliable fast-track diagnostics for the detection of CTX-M ESBL- (CTX-M-p) and carbapenemase-producers (CA-p) directly from blood cultures (BCs) of patients with Enterobacterales (EB) bloodstream infections (BSIs) admitted in emergency and internal medicine departments and its contribution in estimation of in vitro antibiotic susceptibility. A fast-track workflow including MALDI-TOF species identification and two lateral flow immunochromatographic assays for the detection of CTX-M-p and CA-p directly from BCs was performed in parallel with conventional routine, and results were compared. A total of 236 BCs of patients suffering from EB BSI were included. Accuracy of the fast-track workflow ranged from 99.6 to 100%. Among E. coli isolates, CTX-M-p (20.5%) were susceptible to ceftolozane-tazobactam (C/T, 97%), ceftazidime-avibactam (CZA, 100%), and piperacillin-tazobactam (TZP, 84.8%), whereas CTX-M-and-main-carbapenemases-non-producer (CTX-M-CA-np, 79.5%) isolates were susceptible to all the antibiotics tested. Among K. pneumoniae isolates, CTX-M-p (23.3%) were poorly susceptible to TZP (40%) but widely susceptible to C/T (90%), CZA (100%), and amikacin (90%), whereas CTX-M-CA-np (55.8%) were also susceptible to cefepime. CA-p K. pneumoniae (20.9%) were susceptible to CZA (88.9%). All the species other than E. coli and K. pneumoniae were CTX-M-CA-np and were widely susceptible to the antibiotics tested except for isolates of the inducible and derepressed AmpC- or AmpC/ESBL-p species. Rapid identification of species and phenotype together with knowledge of local epidemiology may be crucial to determine the likelihood of deduction of in vitro antibiotic susceptibility on the same day of positive BC processing.
Rapid detection of extended-spectrum-β-lactamase (ESBL) is of paramount importance to accelerate clinical decision-making, optimize antibiotic treatment, and implement adequate infection control measures. This study was aimed at assessing the impact of direct detection of CTX-M ESBL-producers on antimicrobial management of Escherichia coli bloodstream infections over a 2-year period. This study included all E. coli bloodstream infection (BSI) events that were serially processed through a rapid workflow with communication to the clinicians of direct detection of CTX-M ESBL-producers and conventional culture-based workflow. Antimicrobial management was retrospectively analyzed to assess the contribution of the rapid test result. A total of 199 E. coli BSI events with a report of direct detection of CTX-M ESBL production results were included. Of these, 33.7% (n = 67) and 66.3% (n = 132) were reported as positive and negative CTX-M producers, respectively. Detection of CTX-M positive results induced more antibiotic therapy modifications (mainly towards carbapenem-containing regimens, p < 0.01), and antimicrobial susceptibility testing results of CTX-M ESBL-producing E. coli isolates induced more antibiotic escalations towards carbapenem-containing regimens (p < 0.01). Direct detection of CTX-M ESBL-producing E. coli resulted in a remarkable rate of antibiotic optimizations on the same day of blood culture processing. Observing antibiotic management following the availability of antimicrobial susceptibility testing results, additional early optimizations in escalation could probably have been made if the rapid test data had been used. Detection of CTX-M negative results resulted in few therapeutic changes, which could have probably been higher, integrating epidemiological and clinical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.