Invasive pulmonary aspergillosis (IPA) has always been a challenging diagnosis and risk factors an important guide to investigate specific population, especially in Intensive Care Unit. Traditionally recognized risk factors for IPA have been haematological diseases or condition associated with severe immunosuppression, lately completed by chronic conditions (such as obstructive pulmonary disease, liver cirrhosis, chronic kidney disease and diabetes), influenza infection and Intensive Care Unit (ICU) admission. Recently, a new association with SARS-CoV2 infection, named COVID-19-associated pulmonary aspergillosis (CAPA), has been reported worldwide, even if its basic epidemiological characteristics have not been completely established yet. In this narrative review, we aimed to explore the potential risk factors for the development of CAPA and to evaluate whether previous host factors or therapeutic approaches used in the treatment of COVID-19 critically ill patients (such as mechanical ventilation, intensive care management, corticosteroids, broad-spectrum antibiotics, immunomodulatory agents) may impact this new diagnostic category. Reviewing all English-language articles published from December 2019 to December 2020, we identified 21 papers describing risk factors, concerning host comorbidities, ICU management, and COVID-19 therapies. Although limited by the quality of the available literature, data seem to confirm the role of previous host risk factors, especially respiratory diseases. However, the attention is shifting from patients’ related risk factors to factors characterizing the hospital and intensive care course, deeply influenced by specific features of COVID treatment itself. Prolonged invasive or non-invasive respiratory support, as well as the impact of corticosteroids and/or immunobiological therapies seem to play a pivotal role. ICU setting related factors, such as environmental factors, isolation conditions, ventilation systems, building renovation works, and temporal spread with respect to pandemic waves, need to be considered. Large, prospective studies based on new risk factors specific for CAPA are warranted to guide surveillance and decision of when and how to treat this particular population.
BackgroundMid-regional pro-adrenomedullin (MR-proADM), an endothelium-related peptide, is a predictor of death and multi-organ failure in respiratory infections and sepsis and seems to be effective in identifying COVID-19 severe forms. The study aims to evaluate the effectiveness of MR-proADM in comparison to routine inflammatory biomarkers, lymphocyte subpopulations, and immunoglobulin (Ig) at an intensive care unit (ICU) admission and over time in predicting mortality in patients with severe COVID-19.MethodsAll adult patients with COVID-19 pneumonia admitted between March 2020 and June 2021 in the ICUs of a university hospital in Italy were enrolled. MR-proADM, lymphocyte subpopulations, Ig, and routine laboratory tests were measured within 48 h and on days 3 and 7. The log-rank test was used to compare survival curves with MR-proADM cutoff value of >1.5 nmol/L. Predictive ability was compared using the area under the curve (AUC) and 95% confidence interval (CI) of different receiver-operating characteristic curves.ResultsA total of 209 patients, with high clinical severity [SOFA 7, IQR 4–9; SAPS II 52, IQR 41–59; median viral pneumonia mortality score (MuLBSTA)−11, IQR 9–13] were enrolled. ICU and overall mortality were 55.5 and 60.8%, respectively. Procalcitonin, lactate dehydrogenase, D-dimer, the N-terminal prohormone of brain natriuretic peptide, myoglobin, troponin, neutrophil count, lymphocyte count, and natural killer lymphocyte count were significantly different between survivors and non-survivors, while lymphocyte subpopulations and Ig were not different in the two groups. MR-proADM was significantly higher in non-survivors (1.17 ± 0.73 vs. 2.31 ± 2.63, p < 0.0001). A value of >1.5 nmol/L was an independent risk factor for mortality at day 28 [odds ratio of 1.9 (95% CI: 1.220–3.060)] after adjusting for age, lactate at admission, SOFA, MuLBSTA, superinfections, cardiovascular disease, and respiratory disease. On days 3 and 7 of the ICU stay, the MR-proADM trend evaluated within 48 h of admission maintained a correlation with mortality (p < 0.0001). Compared to all other biomarkers considered, the MR-proADM value within 48 h had the best accuracy in predicting mortality at day 28 [AUC = 0.695 (95% CI: 0.624–0.759)].ConclusionMR-proADM seems to be the best biomarker for the stratification of mortality risk in critically ill patients with COVID-19. The Ig levels and lymphocyte subpopulations (except for natural killers) seem not to be correlated with mortality. Larger, multicentric studies are needed to confirm these findings.
Mid-regional proadrenomedullin (MR-proADM) is a new biomarker of endothelial damage and its clinical use is increasing in sepsis and respiratory infections and recently in SARS-CoV-2 infection. We conducted a systematic review and meta-analysis to clarify the use of MR-proADM in severe COVID-19 disease. After Pubmed, Embase, and Scopus search, registries, and gray literature, deduplication, and selection of full-texts, we found 21 studies addressing the use of proadrenomedullin in COVID-19. All the studies were published between 2020 and 2022 from European countries. A total of 9 studies enrolled Intensive Care Unit (ICU) patients, 4 were conducted in the Emergency Department, and 8 had mixed populations. Regarding the ICU critically ill patients, 4 studies evaluating survival as primary outcome were available, of which 3 reported completed data. Combining the selected studies in a meta-analysis, a total of 252 patients were enrolled; of these, 182 were survivors and 70 were non-survivors. At the admission to the ICU, the average MR-proADM level in survivor patients was 1.01 versus 1.64 in non-survivor patients. The mean differences of MR-proADM values in survivors vs. non-survivors was −0.96 (95% CI from −1.26, to −0.65). Test for overall effect: Z = 6.19 (p < 0.00001) and heterogeneity was I2 = 0%. MR-proADM ICU admission levels seem to predict mortality among the critical COVID-19 population. Further, prospective studies, focused on critically ill patients and investigating a reliable MR-proADM cut-off, are needed to provide adequate guidance to its use in severe COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.