This is the accepted version of the paper.This version of the publication may differ from the final published version. are not only consistent, but also scarcely plagued by small-sample bias. To this purpose, we introduce the concept of threshold bipower variation, which is based on the joint use of bipower variation and threshold estimation. We show that its generalization (threshold multipower variation) admits a feasible central limit theorem in the presence of jumps and provides less biased estimates, with respect to the standard multipower variation, of the continuous quadratic variation in finite samples. We further provide a new test for jump detection which has substantially more power than tests based on multipower variation. Empirical analysis (on the S&P500 index, individual stocks and US bond yields) shows that the proposed techniques improve significantly the accuracy of volatility forecasts especially in periods following the occurrence of a jump.
Permanent repository link
This is the accepted version of the paper.This version of the publication may differ from the final published version. are not only consistent, but also scarcely plagued by small-sample bias. To this purpose, we introduce the concept of threshold bipower variation, which is based on the joint use of bipower variation and threshold estimation. We show that its generalization (threshold multipower variation) admits a feasible central limit theorem in the presence of jumps and provides less biased estimates, with respect to the standard multipower variation, of the continuous quadratic variation in finite samples. We further provide a new test for jump detection which has substantially more power than tests based on multipower variation. Empirical analysis (on the S&P500 index, individual stocks and US bond yields) shows that the proposed techniques improve significantly the accuracy of volatility forecasts especially in periods following the occurrence of a jump.
Permanent repository link
Assessing systemic risk in financial markets is of great importance but it often requires data that are unavailable or available at a very low frequency. For this reason, systemic risk assessment with partial information is potentially very useful for regulators and other stakeholders. In this paper we consider systemic risk due to fire sales spillover and portfolio rebalancing by using the risk metrics defined by Greenwood et al. (2015). By using the Maximum Entropy principle we propose a method to assess aggregated and single bank's systemicness and vulnerability and to statistically test for a change in these variables when only the information on the size of each bank and the capitalization of the investment assets are available. We prove the effectiveness of our method on 2001-2013 quarterly data of US banks for which portfolio composition is available.JEL codes: C45;C80;G01;G33.
Monitoring and assessing systemic risk in financial markets is of great importance but it often requires data that are unavailable or available at a very low frequency. For this reason, systemic risk assessment with partial information is potentially very useful for regulators and other stakeholders. In this paper we consider systemic risk due to fire sales spillovers and portfolio rebalancing by using the risk metrics defined by Greenwood et al. (2015). By using a method based on the constrained minimization of the Cross Entropy, we show that it is possible to assess aggregated and single bank's systemicness and vulnerability, using only the information on the size of each bank and the capitalization of each investment asset. We also compare our approach with an alternative widespread application of the Maximum Entropy principle allowing to derive graph probability distributions and generating scenarios and we use it to propose a statistical test for a change in banks' vulnerability to systemic events. JEL codes: C45;C80;G01;G33.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.