Event cameras offer many advantages over standard frame-based cameras, such as low latency, high temporal resolution, and a high dynamic range. They respond to pixel-level brightness changes and, therefore, provide a sparse output. However, in textured scenes with rapid motion, millions of events are generated per second. Therefore, state-of-the-art event-based algorithms either require massive parallel computation (e.g., a GPU) or depart from the event-based processing paradigm. Inspired by frame-based pre-processing techniques that reduce an image to a set of features, which are typically the input to higherlevel algorithms, we propose a method to reduce an event stream to a corner event stream. Our goal is twofold: extract relevant tracking information (corners do not suffer from the aperture problem) and decrease the event rate for later processing stages. Our event-based corner detector is very efficient due to its design principle, which consists of working on the Surface of Active Events (a map with the timestamp of the latest event at each pixel) using only comparison operations. Our method asynchronously processes event by event with very low latency. Our implementation is capable of processing millions of events per second on a single core (less than a micro-second per event) and reduces the event rate by a factor of 10 to 20. AbstractEvent cameras offer many advantages over standard frame-based cameras, such as low latency, high temporal resolution, and a high dynamic range. They respond to pixellevel brightness changes and, therefore, provide a sparse output. However, in textured scenes with rapid motion, millions of events are generated per second. Therefore, stateof-the-art event-based algorithms either require massive parallel computation (e.g., a GPU) or depart from the event-based processing paradigm. Inspired by frame-based pre-processing techniques that reduce an image to a set of features, which are typically the input to higher-level algorithms, we propose a method to reduce an event stream to a corner event stream. Our goal is twofold: extract relevant tracking information (corners do not suffer from the aperture problem) and decrease the event rate for later processing stages. Our event-based corner detector is very efficient due to its design principle, which consists of working on the Surface of Active Events (a map with the timestamp of the latest event at each pixel) using only comparison operations. Our method asynchronously processes event by event with very low latency. Our implementation is capable of processing millions of events per second on a single core (less than a micro-second per event) and reduces the event rate by a factor of 10 to 20.
ADH-1 is the first anti-N-cadherin compound tested in humans. In N-cadherin-positive patients, ADH-1 showed an acceptable toxicity profile, linear PK and hints of antitumour activity in gynaecological cancers.
BackgroundRadiofrequency ablation (RFA) is one of the most promising non-surgical treatments for hepatic tumors. The assessment of the therapeutic efficacy of RFA is usually obtained by visual comparison of pre- and post-treatment CT images, but no numerical quantification is performed.MethodsIn this work, a novel method aiming at providing a more objective tool for the evaluation of RFA coverage is described. Image registration and segmentation techniques were applied to enable the visualization of the tumor and the corresponding post-RFA necrosis in the same framework. In addition, a set of numerical indexes describing tumor/necrosis overlap and their mutual position were computed.ResultsAfter validation of segmentation step, the method was applied on a dataset composed by 10 tumors, suspected not to be completed treated. Numerical indexes showed that only two tumors were totally treated and the percentage of a residual tumor was in the range of 5.12%-35.92%.ConclusionsThis work represents a first attempt to obtain a quantitative tool aimed to assess the accuracy of RFA treatment. The possibility to visualize the tumor and the correspondent post-RFA necrosis in the same framework and the definition of some synthetic numerical indexes could help clinicians in ameliorating RFA treatment.
Childhood malignant gliomas are rare, but their clinical behavior is almost as aggressive as in adults, with resistance to therapy, rapid progression, and not uncommonly, dissemination. Our study protocol incorporated sequential chemotherapy and high-dose thiotepa in the preradiant phase, followed by focal radiotherapy and maintenance with vincristine and lomustine for a total duration of one year. The induction treatment consisted of two courses of cisplatin (30 mg/m2) plus etoposide (150 mg/m2) x 3 days and of vincristine (1.4 mg/m2) plus cyclophosphamide (1.5 g/m2) plus high-dose methotrexate (8 g/m2), followed by high-dose thiotepa (300 mg/m2 x 3 doses), with harvesting of peripheral blood progenitor cells after the first cisplatin/etoposide course. From August 1996 to March 2003, 21 children, 14 females and 7 males, with a median age of 10 years were enrolled, 18 presenting with residual disease after surgery. Histologies were glioblastoma multiforme in 10, anaplastic astrocytoma in nine, and anaplastic oligodendroglioma in two; sites of origin were supratentorial areas in 17, spine in two, and posterior fossa in two. Of the 21 patients, 12 have died (10 after relapse, with a median time to progression for the whole series of 14 months; one with intratumoral bleeding at 40 months after diagnosis; and one affected by Turcot syndrome for duodenal cancer relapse). Four of 12 relapsed children had tumor dissemination. At a median follow-up of 57 months, overall survival and progression-free survival at four years were 43% and 46%, respectively. Sequential and high-dose chemotherapy can be afforded in front-line therapy of childhood malignant glioma without excessive morbidity and rather encouraging results.
Solid tumors of the spleen are rare, with an incidence of 0.007% in all operating and autopsy specimens. In terms of microscopic structure and function, the spleen consists of two parts: the white pulp, which plays an important role in the immune system and the red pulp, which filters the blood.Primary splenic neoplasms can be classified into lymphoid neoplasms arising from the white pulp, and vascular neoplasms which arise from the red pulp.Primary tumors arising from vascular elements include benign lesions such as hemangioma, lymphangioma and hamartoma, intermediate lesions such as hemangioendothelioma, hemangiopericytoma and littoral cell angioma as well as the frankly malignant hemangiosarcoma.It is usually difficult to distinguish a benign from a malignant lesion with preoperative imaging studies and cytological exam by fine-needle aspiration (FNA), that is not easily obtained because of the risk of bleeding.Therefore a splenectomy should be necessary for a definitive diagnosis of splenic tumors.Martel and all for the first time described the sclerosing angiomatoid nodular transformation (SANT), like a vascular lesion of the spleen, with benign clinical course consisting by altered red pulp tissue that has been entrapped by a non-neoplastic stromal proliferative process.We describe a rare case of benign splenic mass documented with FDG/PET-CT (referred as equivocal), CT and MRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.