BackgroundRadiofrequency ablation (RFA) is one of the most promising non-surgical treatments for hepatic tumors. The assessment of the therapeutic efficacy of RFA is usually obtained by visual comparison of pre- and post-treatment CT images, but no numerical quantification is performed.MethodsIn this work, a novel method aiming at providing a more objective tool for the evaluation of RFA coverage is described. Image registration and segmentation techniques were applied to enable the visualization of the tumor and the corresponding post-RFA necrosis in the same framework. In addition, a set of numerical indexes describing tumor/necrosis overlap and their mutual position were computed.ResultsAfter validation of segmentation step, the method was applied on a dataset composed by 10 tumors, suspected not to be completed treated. Numerical indexes showed that only two tumors were totally treated and the percentage of a residual tumor was in the range of 5.12%-35.92%.ConclusionsThis work represents a first attempt to obtain a quantitative tool aimed to assess the accuracy of RFA treatment. The possibility to visualize the tumor and the correspondent post-RFA necrosis in the same framework and the definition of some synthetic numerical indexes could help clinicians in ameliorating RFA treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.