Computational methods have gained prominence in healthcare research. The accessibility of healthcare data has greatly incited academicians and researchers to develop executions that help in prognosis of cancer drug response. Among various computational methods, machine‐learning (ML) and deep‐learning (DL) methods provide the most consistent and effectual approaches to handle the serious aftermaths of the deadly disease and drug administered to the patients. Hence, this systematic literature review has reviewed researches that have investigated drug discovery and prognosis of anticancer drug response using ML and DL algorithms. Fot this purpose, PRISMA guidelines have been followed to choose research papers from Google Scholar, PubMed, and Sciencedirect websites. A total count of 105 papers that align with the context of this review were chosen. Further, the review also presents accuracy of the existing ML and DL methods in the prediction of anticancer drug response. It has been found from the review that, amidst the availability of various studies, there are certain challenges associated with each method. Thus, future researchers can consider these limitations and challenges to develop a prominent anticancer drug response prediction method, and it would be greatly beneficial to the medical professionals in administering non‐invasive treatment to the patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.