Background and Purpose-In healthy humans, observation of another individual performing a motor training task (action observation [AO]) facilitates, in the observer, the effects of physical training (PT) on motor memory formation. It is not known whether this facilitatory process, of potential value for neurorehabilitation, occurs after stroke. Methods-Eight chronic stroke patients completed this crossover-randomized investigation. A transcranial magnetic stimulation protocol that tests formation of motor memories was used to determine the effects of PT alone and in combination with AO in 2 different forms: congruent (PTϩAO congruent ) and incongruent (PTϩAO incongruent ) to the practiced task. Results-The magnitude of motor memory formation was larger with PTϩAO congruent than with PT alone or PTϩ AO incongruent . This effect was associated with a differential corticomotor excitability change in the muscles acting as agonist and antagonist of the trained/observed movements. Conclusions-These
Abnormal perceptual experiences are central to schizophrenia but the nature of these anomalies remains undetermined. We investigated contextual processing abnormalities across a comprehensive set of visual tasks. For perception of luminance, size, contrast, orientation and motion, we quantified the degree to which the surrounding visual context altered a center stimulus’ appearance. Across tasks, healthy participants showed robust contextual effects, as evidenced by pronounced misperceptions of center stimuli. Schizophrenia patients exhibited intact contextual modulations of luminance and size, but showed weakened contextual modulations of contrast, performing more accurately than controls. Strong motion and orientation context effects correlated with worse symptoms and social functioning. Importantly, the overall strength of contextual modulation across tasks did not differ between controls and schizophrenia patients. Additionally, performance measures across contextual tasks were uncorrelated, implying discrete underlying processes. These findings reveal that abnormal contextual modulation in schizophrenia is selective, arguing against the proposed unitary contextual processing dysfunction.
Nervous systems adapt to the prevailing sensory environment, and the consequences of this adaptation can be observed in the responses of single neurons and in perception. Given the variety of timescales underlying events in the natural world, determining the temporal characteristics of adaptation is important to understanding how perception adjusts to its sensory environment. Previous work has shown that neural adaptation can occur on a timescale of milliseconds, but perceptual adaptation has generally been studied over relatively long timescales, typically on the order of seconds. This disparity raises important questions. Can perceptual adaptation be observed at brief, functionally relevant timescales? And if so, how do its properties relate to the rapid adaptation seen in cortical neurons? We address these questions in the context of visual motion processing, a perceptual modality characterized by rapid temporal dynamics. We demonstrate objectively that 25 ms of motion adaptation is sufficient to generate a motion aftereffect, an illusory sensation of movement experienced when a moving stimulus is replaced by a stationary pattern. This rapid adaptation occurs regardless of whether the adapting motion is perceived. In neurophysiological recordings from the middle temporal area of primate visual cortex, we find that brief motion adaptation evokes directionselective responses to subsequently presented stationary stimuli. A simple model shows that these neural responses can explain the consequences of rapid perceptual adaptation. Overall, we show that the motion aftereffect is not merely an intriguing perceptual illusion, but rather a reflection of rapid neural and perceptual processes that can occur essentially every time we experience motion.T he nervous system constantly adapts to the statistics of its sensory inputs, and such adaptation has important perceptual consequences (1, 2). Examples include the desensitization of the somatosensory system to constant stimuli (e.g., clothing) and the visual system's adjustments to prevailing light levels. Adaptation affects both neural activity during constant stimulation and neural responses to subsequent stimuli (1). Given the variety of timescales underlying events in the natural world, determining the temporal characteristics of adaptation is a key step in understanding sensory perception. Traditionally, perceptual adaptation is thought to occur over long time periods, with the adapting stimuli being presented for seconds or longer. Neurophysiological work, however, has shown that adaptation occurs at a variety of timescales and can be observed following stimulus exposures as brief as tens of milliseconds (1, 3-7). This rapid adaptation has strong implications for neural coding of sensory stimuli (5,6,8), which renders the relative lack of evidence about brief perceptual adaptation puzzling. Here we consider this question in the context of visual motion processing. Because of the highly dynamic nature of moving stimuli, rapid adaptation is potentially of great relev...
In addition to motion perception per se, we utilize motion information for a wide range of brain functions. These varied functions place different demands on the visual system, and therefore a stimulus that provides useful information for one function may be inadequate for another. For example, the direction of motion of large high-contrast stimuli is difficult to discriminate perceptually, but other studies have shown that such stimuli are highly effective at eliciting directional oculomotor responses such as the ocular following response (OFR). Here, we investigated the degree of independence between perceptual and oculomotor processing by determining whether perceptually suppressed moving stimuli can nonetheless evoke reliable eye movements. We measured reflexively evoked tracking eye movements while observers discriminated the motion direction of large high-contrast stimuli. To quantify the discrimination ability of the oculomotor system, we used signal detection theory to generate associated oculometric functions. The results showed that oculomotor sensitivity to motion direction is not predicted by perceptual sensitivity to the same stimuli. In fact, in several cases oculomotor responses were more reliable than perceptual responses. Moreover, a trial-by-trial analysis indicated that, for stimuli tested in this study, oculomotor processing was statistically independent from perceptual processing. Evidently, perceptual and oculomotor responses reflect the activity of independent dissociable mechanisms despite operating on the same input. While results of this kind have traditionally been interpreted in the framework of perception versus action, we propose that these differences reflect a more general principle of modularity.
Anomalous perception has been investigated extensively in schizophrenia, but it is unclear whether these impairments are specific to schizophrenia or extend to other psychotic disorders. Recent studies of visual context processing in schizophrenia (Tibber et al., 2013; Yang et al., 2013) point to circumscribed, task-specific abnormalities. Here we examined visual contextual processing across a comprehensive set of visual tasks in individuals with bipolar disorder and compared their performance with that of our previously published results from schizophrenia and healthy participants tested on those same tasks. We quantified the degree to which the surrounding visual context alters a center stimulus' appearance for brightness, size, contrast, orientation and motion. Across these tasks, healthy participants showed robust contextual effects, as indicated by pronounced misperceptions of the center stimuli. Participants with bipolar disorder showed contextual effects similar in magnitude to those found in healthy participants on all tasks. This result differs from what we found in schizophrenia participants (Yang et al., 2013) who showed weakened contextual modulations of contrast but intact contextual modulations of perceived luminance and size. Yet in schizophrenia participants, the magnitude of the contrast illusion did not correlate with symptom measures. Performance on the contrast task by the bipolar disorder group also could not be distinguished from that of the schizophrenia group, and this may be attributed to the result that bipolar patients who presented with greater manic symptoms showed weaker contrast modulation. Thus, contrast gain control may be modulated by clinical state in bipolar disorder. Stronger motion and orientation context effects correlated with worse clinical symptoms across both patient groups and especially in schizophrenia participants. These results highlight the complexity of visual context processing in schizophrenia and bipolar disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.