Centre-surround receptive field organization is a ubiquitous property in mammalian visual systems, presumably tailored for extracting image features that are differentially distributed over space. In visual motion, this is evident as antagonistic interactions between centre and surround regions of the receptive fields of many direction-selective neurons in visual cortex. In a series of psychophysical experiments we make the counterintuitive observation that increasing the size of a high-contrast moving pattern renders its direction of motion more difficult to perceive and reduces its effectiveness as an adaptation stimulus. We propose that this is a perceptual correlate of centre-surround antagonism, possibly within a population of neurons in the middle temporal visual area. The spatial antagonism of motion signals observed at high contrast gives way to spatial summation as contrast decreases. Evidently, integration of motion signals over space depends crucially on the visibility of those signals, thereby allowing the visual system to register motion information efficiently and adaptively.
Damage to the primary visual cortex (V1) or its immediate afferents results in a dense scotoma, termed cortical blindness (CB). CB subjects have residual visual abilities, or blindsight, which allow them to detect and sometimes discriminate stimuli with high temporal and low spatial frequency content. Recent work showed that with training, discriminations in the blind field can become more reliable, and even reach consciousness. However, the narrow spatiotemporal bandwidth of blindsight limits its functional usefulness in everyday vision. Here, we asked whether visual training can induce recovery outside the spatiotemporal bandwidth of blindsight. Specifically, could human CB subjects learn to discriminate static, nonflickering stimuli? Can such learning transfer to untrained stimuli and tasks, and does double training with moving and static stimuli provide additional advantages relative to static training alone? We found CB subjects capable of relearning static orientation discriminations following single as well as double training. However, double training with complex, moving stimuli in a separate location was necessary to recover complex motion thresholds at locations trained with static stimuli. Subjects trained on static stimuli alone could only discriminate simple motion. Finally, both groups had approximately equivalent, incomplete recovery of fine orientation and direction discrimination thresholds, as well as contrast sensitivity. These results support two conclusions: (1) from a practical perspective, complex moving stimuli and double training may be superior training tools for inducing visual recovery in CB, and (2) the cortically blind visual system can relearn to perform a wider range of visual discriminations than predicted by blindsight alone.
Schizophrenia is often accompanied by a range of visual perception deficits, with many involving impairments in motion perception. The presence of perceptual abnormalities may impair neural processes that depend on normal visual analysis, which in turn may affect overall functioning in dynamic visual environments. Here, we examine the integrity of suppressive center-surround mechanisms in motion perception of schizophrenic patients. Center-surround suppression has been implicated in a range of visual functions, including figureground segregation and pursuit eye movements, visual functions that are impaired in schizophrenia. In control subjects, evidence of center-surround suppression is found in a reduced ability to perceive motion of a high-contrast stimulus as its size increases. This counterintuitive finding is likely a perceptual correlate of center-surround mechanisms in cortical area MT. We now show that schizophrenic patients exhibit abnormally weak center-surround suppression in motion, an abnormality that is most pronounced in patients with severe negative symptoms. Interestingly, patients with the weakest surround suppression outperformed control subjects in motion discriminations of large high-contrast stimuli. This enhanced motion perception of large high-contrast stimuli is consistent with an MT abnormality in schizophrenia and has a potential to disrupt smooth pursuit eye movements and other visual functions that depend on unimpaired center-surround interactions in motion.
Atypical perceptual processing in autism spectrum disorders (ASD) is well documented. Additionally, growing evidence supports the hypothesis that an excitatory/inhibitory neurochemical imbalance might underlie ASD. Here, we investigated putative behavioral consequences of the excitatory/inhibitory imbalance in the context of visual motion perception. As stimulus size increases, typical observers exhibit marked impairments in perceiving motion of high-contrast stimuli. This result, termed spatial suppression, is believed to reflect inhibitory motion processing mechanisms. Motion processing is also affected by gain control—an inhibitory mechanism that underlies saturation of neural responses at high contrast. Motivated by these behavioral correlates of inhibitory function, we investigated motion perception in human children with ASD (N=20) and typical development (N=26). At high contrast, both groups exhibited similar impairments in motion perception with increasing stimulus size, revealing no apparent differences in spatial suppression. However, there was a substantial enhancement of motion perception in ASD: children with ASD exhibited a consistent two-fold improvement in perceiving motion. Hypothesizing this enhancement might indicate abnormal weakening of response gain control, we repeated our measurements at low contrast, where the effects of gain control should be negligible. At low contrast, we indeed found no group differences in motion discrimination thresholds. These low-contrast results, however, revealed weaker spatial suppression in ASD, suggesting the possibility that gain control abnormalities in ASD might have masked spatial suppression differences at high contrast. Overall, we report a pattern of motion perception abnormalities in ASD that includes substantial enhancements at high contrast and is consistent with an underlying excitatory/inhibitory imbalance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.