Studies of Lovaas-based approaches and early intensive behavioral intervention variants and the Early Start Denver Model resulted in some improvements in cognitive performance, language skills, and adaptive behavior skills in some young children with ASDs, although the literature is limited by methodologic concerns.
Autism spectrum disorders (ASD) form a continuum of neurodevelopmental disorders, characterized by deficits in communication and reciprocal social interaction, as well as by repetitive behaviors and restricted interests. Sensory disturbances are also frequently reported in clinical and autobiographical accounts. However, surprisingly few empirical studies have characterized the fundamental features of sensory and multisensory processing in ASD. The current study is structured to test for potential differences in multisensory temporal function in ASD by making use of a temporally dependent, low-level multisensory illusion. In this illusion, the presentation of a single flash of light accompanied by multiple sounds often results in the illusory perception of multiple flashes. By systematically varying the temporal structure of the audiovisual stimuli, a “temporal window” within which these stimuli are likely to be bound into a single perceptual entity can be defined. The results of this study revealed that children with ASD report the flash-beep illusion over an extended range of stimulus onset asynchronies relative to children with typical development, suggesting that children with ASD have altered multisensory temporal function. These findings provide valuable new insights into our understanding of sensory processing in ASD and may hold promise for the development of more sensitive diagnostic measures and improved remediation strategies.
Autism spectrum disorders (ASD) are characterized by deficits in social reciprocity and communication, as well as by repetitive behaviors and restricted interests. Unusual responses to sensory input and disruptions in the processing of both unisensory and multisensory stimuli also have been reported frequently. However, the specific aspects of sensory processing that are disrupted in ASD have yet to be fully elucidated. Recent published work has shown that children with ASD can integrate low-level audiovisual stimuli, but do so over an extended range of time when compared with typically developing (TD) children. However, the possible contributions of altered unisensory temporal processes to the demonstrated changes in multisensory function are yet unknown. In the current study, unisensory temporal acuity was measured by determining individual thresholds on visual and auditory temporal order judgment (TOJ) tasks, and multisensory temporal function was assessed through a cross-modal version of the TOJ task. Whereas no differences in thresholds for the visual TOJ task were seen between children with ASD and TD, thresholds were higher in ASD on the auditory TOJ task, providing preliminary evidence for impairment in auditory temporal processing. On the multisensory TOJ task, children with ASD showed performance improvements over a wider range of temporal intervals than TD children, reinforcing prior work showing an extended temporal window of multisensory integration in ASD. These findings contribute to a better understanding of basic sensory processing differences, which may be critical for understanding more complex social and cognitive deficits in ASD, and ultimately may contribute to more effective diagnostic and interventional strategies.
Atypical perceptual processing in autism spectrum disorders (ASD) is well documented. Additionally, growing evidence supports the hypothesis that an excitatory/inhibitory neurochemical imbalance might underlie ASD. Here, we investigated putative behavioral consequences of the excitatory/inhibitory imbalance in the context of visual motion perception. As stimulus size increases, typical observers exhibit marked impairments in perceiving motion of high-contrast stimuli. This result, termed spatial suppression, is believed to reflect inhibitory motion processing mechanisms. Motion processing is also affected by gain control—an inhibitory mechanism that underlies saturation of neural responses at high contrast. Motivated by these behavioral correlates of inhibitory function, we investigated motion perception in human children with ASD (N=20) and typical development (N=26). At high contrast, both groups exhibited similar impairments in motion perception with increasing stimulus size, revealing no apparent differences in spatial suppression. However, there was a substantial enhancement of motion perception in ASD: children with ASD exhibited a consistent two-fold improvement in perceiving motion. Hypothesizing this enhancement might indicate abnormal weakening of response gain control, we repeated our measurements at low contrast, where the effects of gain control should be negligible. At low contrast, we indeed found no group differences in motion discrimination thresholds. These low-contrast results, however, revealed weaker spatial suppression in ASD, suggesting the possibility that gain control abnormalities in ASD might have masked spatial suppression differences at high contrast. Overall, we report a pattern of motion perception abnormalities in ASD that includes substantial enhancements at high contrast and is consistent with an underlying excitatory/inhibitory imbalance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.