In this paper we show how the concepts of answer set programming and fuzzy logic can be successfully combined into the single framework of fuzzy answer set programming (FASP). The framework offers the best of both worlds: from the answer set semantics, it inherits the truly declarative non-monotonic reasoning capabilities while, on the other hand, the notions from fuzzy logic in the framework allow it to step away from the sharp principles used in classical logic, e.g., that something is either completely true or completely false. As fuzzy logic gives the user great flexibility regarding the choice for the interpretation of the notions of negation, conjunction, disjunction and implication, the FASP framework is highly configurable and can, e.g., be tailored to any specific area of application. Finally, the presented framework turns out to be a proper extension of classical answer set programming, as we show, in contrast to other proposals in the literature, that there are only minor restrictions one has to demand on the fuzzy operations used, in order to be able to retrieve the classical semantics using FASP.
Open answer set programming (OASP) is an extension of answer set programming where one may ground a program with an arbitrary superset of the program's constants. We define a fixed point logic (FPL) extension of Clark's completion such that open answer sets correspond to models of FPL formulas and identify a syntactic subclass of programs, called (loosely) guarded programs. Whereas reasoning with general programs in OASP is undecidable, the FPL translation of (loosely) guarded programs falls in the decidable (loosely) guarded fixed point logic (µ(L)GF). Moreover, we reduce normal closed ASP to loosely guarded OASP, enabling for the first time, a characterization of an answer set semantics by µLGF formulas.We further extend the open answer set semantics for programs with generalized literals. Such generalized programs (gPs) have interesting properties, e.g., the ability to express infinity axioms. We restrict the syntax of gPs such that both rules and generalized literals are guarded. Via a translation to guarded fixed point logic, we deduce 2-exptime-completeness of satisfiability checking in such guarded gPs (GgPs). Bound GgPs are restricted GgPs with exptime-complete satisfiability checking, but still sufficiently expressive to optimally simulate computation tree logic (CTL). We translate Datalog lite programs to GgPs, establishing equivalence of GgPs under an open answer set semantics, alternation-free µGF, and Datalog lite. This is a revised and extended version of [Heymans et al. 2005a] and [Heymans et al. 2006a].
We extend answer set programming (ASP) with, possibly infinite, open domains. Since this leads to undecidable reasoning, we restrict the syntax of programs, while carefully guarding knowledge representation mechanisms such as negation as failure and inequalities. Reasoning with the resulting extended forest logic programs (EFoLPs) can be reduced to finite answer set programming, for which reasoners are available.We argue that extended forest logic programming is a useful tool for uniformly representing and reasoning with both ontological and rule-based knowledge, as they can capture a large fragment of the OWL DL ontology language equipped with DL-safe rules. Furthermore, EFoLPs enable nonmonotonic reasoning, a desirable feature in locally closed subareas of the Semantic Web.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.