A variety of approaches have been recently proposed to automatically infer users' personality from their user generated content in social media. Approaches differ in terms of the machine learning algorithms and the feature sets used, type of utilized footprint, and the social media environment used to collect the data. In this paper, we perform a comparative analysis of state-of-the-art computational personality recognition methods on a varied set of social media ground truth data from Facebook, Twitter and YouTube. We answer three questions: (1) Should personality prediction be treated as a multi-label prediction task (i.e., all personality traits of a given user are predicted at once), or should each trait be identified separately? (2) Which predictive features work well across different online environments? and (3) What is the decay in accuracy when porting models trained in one social media environment to another?
In this paper we show how the concepts of answer set programming and fuzzy logic can be successfully combined into the single framework of fuzzy answer set programming (FASP). The framework offers the best of both worlds: from the answer set semantics, it inherits the truly declarative non-monotonic reasoning capabilities while, on the other hand, the notions from fuzzy logic in the framework allow it to step away from the sharp principles used in classical logic, e.g., that something is either completely true or completely false. As fuzzy logic gives the user great flexibility regarding the choice for the interpretation of the notions of negation, conjunction, disjunction and implication, the FASP framework is highly configurable and can, e.g., be tailored to any specific area of application. Finally, the presented framework turns out to be a proper extension of classical answer set programming, as we show, in contrast to other proposals in the literature, that there are only minor restrictions one has to demand on the fuzzy operations used, in order to be able to retrieve the classical semantics using FASP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.