In the primate visual system, area V4 is located in the ventral pathway and is traditionally thought to be involved in processing color and form information. However, little is known about its functional role in processing motion information. Using intrinsic signal optical imaging over large fields of view in V1, V2, and V4, we mapped the direction of motion responses in anesthetized macaques. We found that V4 contains direction-preferring domains that are preferentially activated by stimuli moving in one direction. These direction-preferring domains normally occupy several restricted regions of V4 and tend to overlap with orientation- and color-preferring domains. Single-cell recordings targeting these direction-preferring domains also showed a clustering, as well as a columnar organization of V4 direction-selective neurons. These data suggest that, in contrast to the classical view, motion information is also processed in ventral pathway regions such as area V4.
Two incongruent images viewed by the two eyes cause binocular rivalry, during which observers perceive continuous alternations between these two visual images. Previous studies in both humans and monkeys have shown that the primary visual cortex (V1) plays a critical role in the rivalry perception. However, it is unclear whether the rivalry activity observed in V1 relies on conscious influences. Here, we examine the responses of V1 in monkeys under general anesthesia. With intrinsic signal optical imaging and single-trial analysis, alternating activation of ocular dominance columns in V1 was observed during binocularly incongruent stimulation. Left-and right-eye columns exhibited counterphase activation, which were modulated by stimulus features in ways similar to those found in conscious human observers. These observations indicated that binocular rivalry occurs in V1 without consciousness, suggesting that the low-level automatic mechanisms play a more important role than previously believed in handling visual ambiguities.
The ability to extract the shape of moving objects is fundamental to visual perception. However, where such computations are processed in the visual system is unknown. To address this question, we used intrinsic signal optical imaging in awake monkeys to examine cortical response to perceptual contours defined by motion contrast (motion boundaries, MBs). We found that MB stimuli elicit a robust orientation response in area V2. Orientation maps derived from subtraction of orthogonal MB stimuli aligned well with the orientation maps obtained with luminance gratings (LGs). In contrast, area V1 responded well to LGs, but exhibited a much weaker orientation response to MBs. We further show that V2 direction domains respond to motion contrast, which is required in the detection of MB in V2. These results suggest that V2 represents MB information, an important prerequisite for shape recognition and figure-ground segregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.