Based on the reflection, absorption and multiple reflection attenuation principle of composite shielding, composite fiberboard with multiple electromagnetic shielding functions was developed according to the structure design, which was made by filling with mineral powder and stainless steel nets, and then sprayed single face with conductive paint. The results show that: electromagnetic shielding effectiveness of the product is above 60dB and reaches the better grade in 18.85MHz-1.46GHz; the product filled with magnetite powder has better comprehensive mechanical properties than the product filled with barite powder, and its modulus of rupture, modulus of elasticity, internal bonding strength and thickness swelling rate of water absorption all reach the Chinese national standards.
The use of recycled mixed aggregates (RMA) in cement-stabilized materials (CSM) is an effective way to dispose of and reuse demolition waste. However, this approach faces various challenges; for example, the drying shrinkage of CSM with 100% RMA is very high, which is unfavorable for use in road engineering. In order to use a simple method to reduce the drying shrinkage of the CSM with 100% RMA and give it reliable strength, the effect of fly ash on the mechanical properties, drying shrinkage, and abrasion resistance of CSM with 100% RMA was investigated in this study, and the mechanism was examined by X-ray Diffraction (XRD), Mercury Intrusion Porosimetry (MIP), and Scanning Electron Microscopy (SEM). The results revealed that the addition of fly ash would decrease the drying shrinkage of CSM with 100% RMA. Moreover, when the amount of fly ash was less than 20%, the later strength increased remarkably despite the slight decrease in the early unconfined compressive strength, indirect tensile strength, compressive and splitting elastic modulus, and abrasion resistance of CSM with 100% RMA. The microstructure analysis results indicated that fly ash increased the decline range of diffraction intensity of C2S and C3S at a later age and also helped to optimize the pore structure. Research results of this article can be used to optimize the mechanical properties of CSM with 100% RMA and guide its application in road base.
In this study, the effect of SiO2/Al2O3 (S/A), Na2O/Al2O3 (N/A) and H2O/Na2O (H/N) molar ratios on bending and compressive strength of geopolymer were investigated. The geopolymerization mechanism was also analyzed from microstructure difference by FTIR. The experimental results showed that compressive strength and bending strength of geopolymer has an opposite reaction under different critical molar ratios. The increase of S/A molar ratio and the decrease of N/A and H/N molar ratios have resulted in an increase of the compressive strength. However, it caused a noticeable decrease in bending strength. The microstructure of geopolymer indicated that the degree of polymerization and cohesion of geopolymer have systematical depending on these critical molar ratios, making the mechanical properties of geopolymer susceptible to different types of loads. This paper reveals the relationship between the microstructure of geopolymer and different mechanical properties and helps to selectively prepare corresponding geopolymer for different loading patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.