This study investigated the effects of polypropylene fibre (PF) reinforcement on the mechanical behaviour of clay soil. Using clay soil and polypropylene fibres from China’s Inner Mongolia and Hebei Provinces, respectively, a series of soil samples with 0%, 1.5%, 2.25%, and 3% PF content by soil weight were subjected to compaction, shear strength, consolidation, California bearing ratio, and microstructure analyses. The study results indicate improved compaction, shear strength, consolidation, and the bearing ratio of the PF-stabilised clay soil. As the PF content increased, its maximum dry density increased and its optimum moisture content decreased; its angle of internal friction increased and its cohesion coefficient decreased; and its void ratio, consolidation coefficient, and hydraulic conductivity all decreased. Comparing the unstabilised (0% PF) and stabilised (3% PF) clay soil, the void ratio, consolidation coefficient, and hydraulic conductivity decreased from 0.96 to 0.93, from 2.52 to 2.34 cm2/s, and from 1.12 to 1.02 cm/s, respectively. The optimum PF content was determined to be 3% by the weight of the soil, as this quantity resulted in the best improvement in soil properties.
The construction of buildings on expansive soils poses considerable risk of damage or collapse due to soil shrinkage or swelling made likely by the remarkable degree compressibility and weak shear resistance of such soils. In this research, rice husk ash (RHA) was added to expansive soil samples in different quantities of 0%, 4%, 8%, 12%, and 16% by weight of soil to determine their effects on the plasticity index, compaction parameters, consolidation performance, and California bearing ratio (CBR)of clay soil. The results show that the use of RHA increases the effective stress and decreases the void ratio and coefficient of consolidation. Adding 16% RHA resulted in the greatest reduction in the hydraulic conductivity, void ratio, and coefficient of consolidation. The void ratio decreased from 0.96 to 0.93, consolidation coefficient decreased from 2.52 to 2.33 cm2/s, and hydraulic conductivity decreased from 1.12 to 0.80 cm/s. The addition of RHA improved the soil properties and coefficient of consolidation due to the high density and cohesiveness of RHA. The results of this study can be used to provide a suitable basis for the treatment of expansive soil to provide improved conditions for infrastructure construction.
In this study, the effect of SiO2/Al2O3 (S/A), Na2O/Al2O3 (N/A) and H2O/Na2O (H/N) molar ratios on bending and compressive strength of geopolymer were investigated. The geopolymerization mechanism was also analyzed from microstructure difference by FTIR. The experimental results showed that compressive strength and bending strength of geopolymer has an opposite reaction under different critical molar ratios. The increase of S/A molar ratio and the decrease of N/A and H/N molar ratios have resulted in an increase of the compressive strength. However, it caused a noticeable decrease in bending strength. The microstructure of geopolymer indicated that the degree of polymerization and cohesion of geopolymer have systematical depending on these critical molar ratios, making the mechanical properties of geopolymer susceptible to different types of loads. This paper reveals the relationship between the microstructure of geopolymer and different mechanical properties and helps to selectively prepare corresponding geopolymer for different loading patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.