Plasmonic noble metal nanoparticles have emerged as a promising material in sensitizing wide-bandgap semiconductors for visible-light photocatalysis. Conventional methods in constructing such heterocatalysts suffer from either poor control over the size of the metal nanoparticles or inefficient charge transfer through the metal/semiconductor interface, which limit their photocatalytic activity. To solve this problem, in this work we construct Au/TiO2 photocatalysts by depositing presynthesized colloidal Au nanoparticles with well-controlled sizes to TiO2 nanocrystals and then removing capping ligands on the Au surface through a delicately designed ligand-exchange method, which leads to close Au/TiO2 Schottky contact after a mild annealing process. Benefiting from this unique synthesis strategy, the obtained photocatalysts show superior activity to conventionally prepared photocatalysts in dye decomposition and water-reduction hydrogen production under visible-light illumination. This study not only opens up new opportunities in designing photoactive materials with high stability and enhanced performance for solar energy conversion but also provides a potential solution for the well-recognized challenge in cleaning capping ligands from the surface of colloidal catalyst nanoparticles.
Solar steam generation technologies have gained increasing attention due to their great potential for clean water generation with low energy consumption. The rational design of a light absorber that can maximize solar energy utilization is therefore of great importance. Here, the synthesis of Ni@C@SiO2 core–shell nanoparticles as promising light absorbers for steam generation by taking advantage of the plasmonic excitation of Ni nanoparticles, the broadband absorption of carbon, and the protective function and hydrophilic property of silica is reported. The nanoparticle‐based evaporator shows an excellent photothermal efficiency of 91.2%, with an evaporation rate of 1.67 kg m−2 h−1. The performance can be further enhanced by incorporating the nanoparticles into a polyvinyl alcohol hydrogel to make a composite film. In addition, utilizing the magnetic property of the core–shell particles allows the creation of surface texture in the film by applying an external magnetic field, which helps increase surface roughness and further boost the evaporation rate to as high as 2.25 kg m−2 h−1.
Herein, a facile seed‐assisted strategy for preparing Cu nanoparticles (NPs) with polyvinyl pyrrolidone (PVP) capping is presented. Compared to the Cu NPs with deficient PVP protection, the Cu NPs capped with a sufficient amount of PVP remain almost completely as Cu0 species. In contrast, the Cu NPs that are considered PVP deficient form an oxide structure in which the inner layer is face‐centered cubic Cu and the outer layer is, at least in part, made up of Cu2O species. Furthermore, to eliminate CO2 molecule diffusion and simultaneously obtain significant current density (200 mA cm−2) for industrial applications, a flow cell configuration is used for carbon dioxide electro reduction reaction (CO2RR) testing in 0.5 m potassium hydroxide solution. The Cu NPs with zero valence deliver Faradaic efficiencies (FEs) for the CO2 reduction to CH4 of over 70%, with a current density exceeding 200 mA cm−2, outstripping the performances of the majority of the reported CO2 electrocatalysts. Interestingly, the distribution of products catalyzed by the Cu NPs with +1 valence includes multicarbon products (C2+) such as C2H4, C2H5OH, CH3COOH, and C3H7OH with combined FEs of >80%, with current densities of up to 300 mA cm−2. The above results unambiguously establish that surface oxidation of Cu species plays a crucial role in the CO2RR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.