SUMMARYA new type of semantic pattern is proposed in this paper, which can be used by users to post questions and answers in user-interactive question answering (QA) systems. The necessary procedures of using semantic patterns in a QA system are also presented, which include question structure analysis, pattern matching, pattern generation, pattern classification and answer extraction. Both the manual creation method and the automatic generation method are proposed for patterns for different applications. A pattern instantiation level metrics is also presented for the predication of the quality of generated or learned patterns. We implemented a user interface for using the semantic pattern in our QA system, which allows users to effectively post and answer questions.
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation. AbstractPurpose -Path planning in unknown or partly unknown environment is a quite complex task, partly because it is an evolving globally optimal path affected by the motion of the robot and the changing of environmental information. The purpose of this paper is to propose an online path planning approach for a mobile robot, which aims to provide a better adaptability to the motion of the robot and the changing of environmental information. Design/methodology/approach -This approach treats the globally optimal path as a changing state and estimates it online with two steps: prediction step, which predicts the globally optimal path based on the motion of the robot; and updating step, which uses the up-to-date environmental information to refine the prediction. Findings -Simulations and experiments show that this approach needs less time to reach the destination than some classical algorithms, provides speedy convergence and can adapt to unexpected obstacles or very limited prior environmental information. The better performances of this approach have been proved in both field and indoor environments. Originality/value -Compared with previous works, the paper's approach has three main contributions. First, it can reduce the time consumed in reaching the destination by adopting an online path planning strategy. Second, it can be applied in such environments as those with unexpected obstacles or with only limited prior environmental information. Third, both motion error of the robot and the changing of environmental information are considered, so that the global adaptability to them is improved.
A personalized e-learning framework based on a user-interactive question-answering (QA) system is proposed, in which a user-modeling approach is used to capture personal information of students and a personalized answer extraction algorithm is proposed for personalized automatic answering. In our approach, a topic ontology (or concept hierarchy) of course content defined by an instructor is used for the system to generate the corresponding structure of boards for holding relevant questions. Students can interactively post questions, and also browse, select, and answer others’ questions in their interested boards. A knowledge base is accumulated using historical question/answer (Q/A) pairs for knowledge reuse. The students’ log data are used to build an association space to compute the interest and authority of the students for each board and each topic. The personal information of students can help instructors design suitable teaching materials to enhance instruction efficiency, be used to implement the personalized automatic answering and distribute unsolved questions to relevant students to enhance the learning efficiency. The experiment results show the efficacy of our user-modeling approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.