Background Lung cancer (LC) remains the deadliest form of cancer globally. While surgery remains the optimal treatment strategy for individuals with early-stage LC, what the metabolic consequences are of such surgical intervention remains uncertain. Methods Negative enrichment-fluorescence in situ hybridization (NE-FISH) was used in an effort to detect circulating tumor cells (CTCs) in pre- and post-surgery peripheral blood samples from 51 LC patients. In addition, targeted metabolomics analyses, multivariate statistical analyses, and pathway analyses were used to explore surgery-associated metabolic changes. Results LC patients had significantly higher CTC counts relative to healthy controls with 66.67% of LC patients having at least 1 detected CTC. CTC counts were associated with clinical outcomes following surgery. In a targeted metabolomics analysis, we detected 34 amino acids, 164 lipids, and 24 fatty acids. When comparing LC patients before and after surgery to control patients, metabolic shifts were detected via PLS-DA and pathway analysis. Further surgery-associated metabolic changes were identified when comparing LA and LB groups. We identified SM 42:4, Ser, Sar, Gln, and LPC 18:0 for inclusion in a biomarker panel for early-stage LC detection based upon an AUC of 0.965 (95% CI = 0.900–1.000). This analysis revealed that SM 42:2, SM 35:1, PC (16:0/14:0), PC (14:0/16:1), Cer (d18:1/24:1), and SM 38:3 may offer diagnostic and prognostic benefits in LC. Conclusions These findings suggest that CTC detection and plasma metabolite profiling may be an effective means of diagnosing early-stage LC and identifying patients at risk for disease recurrence.
Background: Lung cancer (LC) remains the deadliest form of cancer globally. While surgery remains the optimal treatment strategy for individuals with early-stage LC, what the metabolic consequences are of such surgical intervention remains uncertain. Methods: Negative enrichment-fluorescence in situ hybridization (NE-FISH) was used in an effort to detect circulating tumor cells (CTCs) in pre- and post-surgery peripheral blood samples from 51 LC patients. In addition, targeted metabolomics analyses, multivariate statistical analyses, and pathway analyses were used to explore surgery-associated metabolic changes. Results: LC patients had significantly higher CTC counts relative to healthy controls with 66.67% of LC patients having at least 1 detected CTC before surgery. CTC counts were associated with clinical outcomes following surgery. In a targeted metabolomics analysis, we detected 34 amino acids, 147 lipids, and 24 fatty acids. When comparing LC patients before and after surgery to control patients, metabolic shifts were detected via PLS-DA and pathway analysis. Further surgery-associated metabolic changes were identified when comparing LA (LC patients after surgery) and LB (LC patients before surgery) groups. We identified SM 42:4, Ser, Sar, Gln, and LPC 18:0 for inclusion in a biomarker panel for early-stage LC detection based upon an AUC of 0.965 (95% CI = 0.900–1.000). This analysis revealed that SM 42:2, SM 35:1, PC (16:0/14:0), PC (14:0/16:1), Cer (d18:1/24:1), and SM 38:3 may offer diagnostic and prognostic benefits in LC. Conclusions: These findings suggest that CTC detection and plasma metabolite profiling may be an effective means of diagnosing early-stage LC and identifying patients at risk for disease recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.