Implementation of alternative energy supply solutions requires the broad involvement of local communities. Hence, smart energy solutions are primarily investigated on a local scale, resulting in integrated community energy systems (ICESs). Within this framework, the distributed generation can be optimally utilised, matching it with the local load via storage and demand response techniques. In this study, the boat demand flexibility in the Ballen marina on Samsø—a medium-sized Danish island—is analysed for improving the local grid operation. For this purpose, suitable electricity tariffs for the marina and sailors are developed based on the conducted demand analysis. The optimal scheduling of boats and battery energy storage system (BESS) is proposed, utilising mixed-integer linear programming. The marina’s grid-flexible operation is studied for three representative weeks—peak tourist season, late summer, and late autumn period—with the combinations of high/low load and photovoltaic (PV) generation. Several benefits of boat demand response have been identified, including cost savings for both the marina and sailors, along with a substantial increase in load factor. Furthermore, the proposed algorithm increases battery utilisation during summer, improving the marina’s cost efficiency. The cooperation of boat flexibility and BESS leads to improved grid operation of the marina, with profits for both involved parties. In the future, the marina’s demand flexibility could become an essential element of the local energy system, considering the possible increase in renewable generation capacity—in the form of PV units, wind turbines or wave energy.
Integrated community energy systems are an emerging concept for increasing the self-sufficiency and efficiency of local multi-energy systems. This idea can be conceptualised for the smart island energy systems due to their geographical and socioeconomic context, providing several benefits through this transformation. In this study, the energy system of the Ballen marina-located on the medium-sized Danish island of Samsøis investigated. Particular consideration is given to the integration of PV, BESS, and-in the future-flexible loads. For this purpose, the BESS is modelled, incorporating the battery degradation process. The possibilities to improve energy utilisation and maximise self-consumption from the marina's PV units are identified and evaluated, demonstrating a substantial enhancement of the local system operation.
The emerging concept of integrated community energy systems (ICESs) proves its suitability for improving the operation of local grids—increasing self-consumption from local generation, enhancing the load factor, and reducing energy cost. In Ballen marina—located on the Danish island of Samsø—the battery energy storage system (BESS)’s action can be possibly complemented by the flexibility of boats and electric cars. With the greater involvement of energy consumers, the energy system’s performance may become more efficient—from both technical and economic perspectives. Within this framework, the optimal charging and discharging strategies of the marina’s electric cars were developed and evaluated. The car usage profile was generated, utilising a stochastic approach to resemble daily variations in the driving pattern. The optimal charging strategy was established, subsequently integrating this action with boat flexibility. As a future scenario, the benefits of vehicle-to-grid (V2G) technology implementation were examined, proving significant enhancements of the future marina’s grid—with increased photovoltaic (PV) generation capacity and the number of electric cars. The economic benefits of bidirectional charging were proven, with ample advantages for the marina and the rental company, leading to cost savings of up to 51.7% and minimising the energy export by 21.3%. Therefore, increasing the integration level of Ballen marina’s flexible units—electric cars and boats—was concluded to be an important goal for the coming years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.