This paper presents an overview of multi-agent system models of land-use/cover change (MAS/LUCC models). This special class of LUCC models combines a cellular landscape model with agent-based representations of decisionmaking, integrating the two components through specification of interdependencies and feedbacks between agents and their environment. The authors review alternative LUCC modeling techniques and discuss the ways in which MAS/LUCC models may overcome some important limitations of existing techniques. We briefly review ongoing MAS/LUCC modeling efforts in four research areas. We discuss the potential strengths of MAS/LUCC models and suggest that these strengths guide researchers in assessing the appropriate choice of model for their particular research question. We find that MAS/LUCC models are particularly well suited for representing complex spatial interactions under heterogeneous conditions and for modeling decentralized, autonomous decision making. We discuss a range of possible roles for MAS/LUCC models, from abstract models designed to derive stylized hypotheses to empirically detailed simulation models appropriate for scenario and policy analysis. We also discuss the challenge of validation and verification for MAS/LUCC models. Finally, we outline important challenges and open research questions in this new field. We conclude that, while significant challenges exist, these models offer a promising new tool for researchers whose goal is to create fine-scale models of LUCC phenomena that focus on human-environment interactions.
Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action
The proliferation of agent-based models (ABMs) in recent decades has motivated model practitioners to improve the transparency, replicability, and trust in results derived from ABMs. The complexity of ABMs has risen in stride with advances in computing power and resources, resulting in larger models with complex interactions and learning and whose outputs are often high-dimensional and require sophisticated analytical approaches. Similarly, the increasing use of data and dynamics in ABMs has further enhanced the complexity of their outputs. In this article, we offer an overview of the state-of-the-art approaches in analysing and reporting ABM outputs highlighting challenges and outstanding issues. In particular, we examine issues surrounding variance stability (in connection with determination of appropriate number of runs and hypothesis testing), sensitivity analysis, spatio-temporal analysis, visualization, and effective communication of all these to non-technical audiences, such as various stakeholders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.