Short-term plasticity regulates the strength of central synapses as a function of previous activity. In the neocortex, direct synaptic interactions between areas play a central role in cognitive function, but the activity-dependent regulation of these long-range corticocortical connections and their impact on a postsynaptic target neuron is unclear. Here, we use an optogenetic strategy to study the connections between mouse primary somatosensory and motor cortex. We found that short-term facilitation was strong in both corticocortical synapses, resulting in far more sustained responses than local intracortical and thalamocortical connections. A major difference between pathways was that the synaptic strength and magnitude of facilitation were distinct for individual excitatory cells located across all cortical layers and specific subtypes of GABAergic neurons. Facilitation was dependent on the presynaptic calcium sensor synaptotagmin-7 and altered by several optogenetic approaches. Current-clamp recordings revealed that during repetitive activation, the short-term dynamics of corticocortical synapses enhanced the excitability of layer 2/3 pyramidal neurons, increasing the probability of spiking with activity. Furthermore, the properties of the connections linking primary with secondary somatosensory cortex resemble those between somatosensory–motor areas. These short-term changes in transmission properties suggest long-range corticocortical synapses are specialized for conveying information over relatively extended periods.
Layer 6 corticothalamic (L6 CT) neurons are in a strategic position to control sensory input to the neocortex, yet we understand very little about their functions. Apart from studying their anatomical, physiological and synaptic properties, most recent efforts have focused on the activity-dependent influences CT cells can exert on thalamic and cortical neurons through causal optogenetic manipulations. However, few studies have attempted to study them during behavior. To address this gap, we performed juxtacellular recordings from optogenetically identified CT neurons in whisker-related primary somatosensory cortex (wS1) of awake, head-fixed mice (either sex) free to rest quietly or self-initiate bouts of whisking and locomotion. We found a rich diversity of response profiles exhibited by CT cells. Their spiking patterns were either modulated by whisking-related behavior (~28%)or not (~72%). Whisking-responsive neurons exhibited either increases, activated-type, or decreases in firing rates, suppressed-type, that aligned with whisking onset better than locomotion. We also encountered responsive neurons with preceding modulations in firing rate before whisking onset. Overall, whisking better explained these changes in rates than overall changes in arousal. Whisking-unresponsive CT cells were generally quiet, with many having low spontaneous firing rates, sparse-type, and others being completely silent. Remarkably, the sparse firing CT population preferentially spiked at the state transition point when pupil diameter constricted and the mouse entered quiet wakefulness. Thus, our results demonstrate that L6 CT cells in wS1 show diverse spiking patterns, perhaps subserving distinct functional roles related to precisely timed responses during complex behaviors and transitions between discrete waking states.
Group I metabotropic glutamate receptors (GpI mGluR) including mGluR1 and 5 (mGluR1/5) are coupled to Gq and modulate activity-dependent synaptic plasticity. Direct activation of mGluR1/5 causes protein translation-dependent long-term depression (LTD). Although it has been established that intracellular Ca2+ and the Gq-regulated signaling molecules are required for mGluR1/5-LTD, whether and how Ca2+ regulates Gq signaling and up-regulation of protein expression remain unknown. Through pharmacological inhibition, we tested the function of a Ca2+ sensor calmodulin (CaM) in intracellular signaling triggered by the activation of mGluR1/5. CaM inhibitor W13 (N-[4-Aminobutyl]-5-chloro-2-naphthalenesulfonamide hydrochloride) suppressed the mGluR1/5-stimulated activation of ERK1/2 (extracellular signal-regulated kinase½) and S6K1 (p70-S6 kinase 1) in hippocampal neurons. W13 also blocked the mGluR1/5 agonist-induced synaptic depression in hippocampal slices and in anesthetized mice. Consistent with the function of CaM, inhibiting the downstream targets Ca2+/CaM-dependent protein kinases (CaMK) blocked ERK1/2 and S6K1 activation. Further, disruption of the CaM-CaMK-ERK1/2 signaling cascade suppressed the mGluR1/5-stimulated up-regulation of Arc expression. Together, our data suggest CaM as a new Gq signaling component to couple Ca2+ and protein up-regulation and regulate mGluR1/5-mediated synaptic modification.
Xu, You-Fen, Dawn Autio, Mary B. Rheuben, and William D. Atchison. Impairment of synaptic vesicle exocytosis and recycling during neuromuscular weakness produced in mice by 2,4-dithiobiuret. J Neurophysiol 88: 3243-3258, 2002; 10.1152/jn.00934.2001. Chronic treatment of rodents with 2,4-dithiobiuret (DTB) induces a neuromuscular syndrome of flaccid muscle weakness that mimics signs seen in several human neuromuscular disorders such as congenital myasthenic syndromes, botulism, and neuroaxonal dystrophy. DTB-induced muscle weakness results from a reduction of acetylcholine (ACh) release by mechanisms that are not yet clear. The objective of this study was to determine if altered release of ACh during DTB-induced muscle weakness was due to impairments of synaptic vesicle exocytosis, endocytosis, or internal vesicular processing. We examined motor nerve terminals in the triangularis sterni muscles of DTB-treated mice at the onset of muscle weakness. Uptake of FM1-43, a fluorescent marker for endocytosis, was reduced to approximately 60% of normal after either high-frequency nerve stimulation or K ϩ depolarization. Terminals ranged from those with nearly normal fluorescence ("bright terminals") to terminals that were poorly labeled ("dim terminals"). Ultrastructurally, the number of synaptic vesicles that were labeled with horseradish peroxidase (HRP) was also reduced by DTB to approximately 60%; labeling among terminals was similarly variable. A subset of DTB-treated terminals having abnormal tubulovesicular profiles in their centers did not respond to stimulation with increased uptake of HRP and may correspond to dim terminals. Two findings suggest that posttetanic "slow endocytosis" remained qualitatively normal: the rate of this type of endocytosis as measured with FM1-43 did not differ from normal, and HRP was observed in organelles associated with this pathway-coated vesicles, cisternae, as well as synaptic vesicles but not in the tubulovesicular profiles. In DTB-treated bright terminals, end-plate potential (EPP) amplitudes were decreased, and synaptic depression in response to 15-Hz stimulation was increased compared with those of untreated mice; in dim terminals, EPPs were not observed during block with D-tubocurarine. Nerve-stimulation-induced unloading of FM1-43 was slower and less complete than normal in bright terminals, did not occur in dim terminals, and was not enhanced by ␣-latrotoxin. Collectively, these results indicate that the size of the recycling vesicle pool is reduced in nerve terminals during DTB-induced muscle weakness. The mechanisms by which this reduction occurs are not certain, but accumulated evidence suggests that they may include defects in either or both exocytosis and internal vesicular processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.