Targeting EGFR is a validated approach in the treatment of squamous-cell cancers (SCCs), although there are no established biomarkers for predicting response. We have identified a synonymous mutation in EGFR, c.2361G>A (encoding p.Gln787Gln), in two patients with head and neck SCC (HNSCC) who were exceptional responders to gefitinib, and we showed in patient-derived cultures that the A/A genotype was associated with greater sensitivity to tyrosine kinase inhibitors (TKIs) as compared to the G/A and G/G genotypes. Remarkably, single-copy G>A nucleotide editing in isogenic models conferred a 70-fold increase in sensitivity due to decreased stability of the EGFR-AS1 long noncoding RNA (lncRNA). In the appropriate context, sensitivity could be recapitulated through EGFR-AS1 knockdown in vitro and in vivo, whereas overexpression was sufficient to induce resistance to TKIs. Reduced EGFR-AS1 levels shifted splicing toward EGFR isoform D, leading to ligand-mediated pathway activation. In co-clinical trials involving patients and patient-derived xenograft (PDX) models, tumor shrinkage was most pronounced in the context of the A/A genotype for EGFR-Q787Q, low expression of EGFR-AS1 and high expression of EGFR isoform D. Our study reveals how a 'silent' mutation influences the levels of a lncRNA, resulting in noncanonical EGFR addiction, and delineates a new predictive biomarker suite for response to EGFR TKIs.
BackgroundCirculating tumor cells (CTCs) are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.Methodology/Principal FindingsHere, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56) (Breast cancer samples: 12–1275 CTCs/ml; Lung cancer samples: 10–1535 CTCs/ml) rapidly from clinically relevant blood volumes (7.5 ml under 5 min). Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM), fluorescence in-situ hybridization (FISH) (EML4-ALK) or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA), and demonstrate concordance with the original tumor-biopsy samples.Conclusions/SignificanceWe have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS) or proteomic analysis.
In patients with T2DM, treatment with resveratrol regulates energy expenditure through increased skeletal muscle SIRT1 and AMPK expression. These findings indicate that resveratrol may have beneficial exercise-mimetic effects in patients with T2DM.
Purpose Mesenchymal epithelial transition factor ( MET) activation has been implicated as an oncogenic driver in epidermal growth factor receptor ( EGFR)–mutant non–small-cell lung cancer (NSCLC) and can mediate primary and secondary resistance to EGFR tyrosine kinase inhibitors (TKI). High copy number thresholds have been suggested to enrich for response to MET inhibitors. We examined the clinical relevance of MET copy number gain (CNG) in the setting of treatment-naive metastatic EGFR-mutant–positive NSCLC. Patients and Methods MET fluorescence in situ hybridization was performed in 200 consecutive patients identified as metastatic treatment-naïve EGFR-mutant–positive. We defined MET-high as CNG greater than or equal to 5, with an additional criterion of MET/centromeric portion of chromosome 7 ratiο greater than or equal to 2 for amplification. Time-to-treatment failure (TTF) to EGFR TKI in patients identified as MET-high and -low was estimated by Kaplan-Meier method and compared using log-rank test. Multiregion single-nucleotide polymorphism array analysis was performed on 13 early-stage resected EGFR-mutant–positive NSCLC across 59 sectors to investigate intratumoral heterogeneity of MET CNG. Results Fifty-two (26%) of 200 patients in the metastatic cohort were MET-high at diagnosis; 46 (23%) had polysomy and six (3%) had amplification. Median TTF was 12.2 months (95% CI, 5.7 to 22.6 months) versus 13.1 months (95% CI, 10.6 to 15.0 months) for MET-high and -low, respectively ( P = .566), with no significant difference in response rate regardless of copy number thresholds. Loss of MET was observed in three of six patients identified as MET-high who underwent postprogression biopsies, which is consistent with marked intratumoral heterogeneity in MET CNG observed in early-stage tumors. Suboptimal response (TTF, 1.0 to 6.4 months) to EGFR TKI was observed in patients with coexisting MET amplification (five [3.2%] of 154). Conclusion Although up to 26% of TKI-naïve EGFR-mutant–positive NSCLC harbor high MET CNG by fluorescence in situ hybridization, this did not significantly affect response to TKI, except in patients identified as MET-amplified. Our data underscore the limitations of adopting arbitrary copy number thresholds and the need for cross-assay validation to define therapeutically tractable MET pathway dysregulation in EGFR-mutant–positive NSCLC.
BackgroundOral tongue squamous cell carcinomas (TSCC) are a unique subset of head and neck cancers with a distinct demographic profile, where up to half of the cases are never smokers. A small proportion of patients with OSCC are known to respond to EGFR TKI. We used a high-sensitivity mass spectrometry-based mutation profiling platform to determine the EGFR mutation status, as well as other actionable alterations in a series of Asian TSCC.Methods66 TSCC patients treated between 1998-2009 with complete clinico-pathologic data were included in this study. Somatic mutation profiling was performed using Sequenom LungCarta v1.0, and correlated with clinical parameters.ResultsMutations were identified in 20/66(30.3%) of samples and involved TP53, STK11, MET, PIK3CA, BRAF and NRF2. No activating EGFR mutations or KRAS mutations were discovered in our series, where just over a third were never smokers. The most common mutations were in p53 (10.6%; n = 7) and MET (10.6%, n = 11) followed by STK11 (9.1%, n = 6) and PIK3CA (4.5%, n = 3). BRAF and NRF2 mutations, which are novel in TSCC, were demonstrated in one sample each. There was no significant correlation between overall mutation status and smoking history (p = 0.967) or age (p = 0.360). Positive MET alteration was associated with poorer loco-regional recurrence free survival (LRFS) of 11 months [vs 90 months in MET-negative group (p = 0.008)]. None of the other mutations were significantly correlated with LRFS or overall survival. Four of these tumors were propagated as immortalized cell lines and demonstrated the same mutations as the original tumor.ConclusionsUsing the Sequenom multiplexed LungCarta panel, we identified mutations in 6 genes, TP53, STK11, MET, PIK3CA, BRAF and NRF2, with the notable absence of EGFR and HER2 mutations in our series of Asian OSCC. Primary cell line models recapitulated the mutation profiles of the original primary tumours and provide an invaluable resource for experimental cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.