The consequences of therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy are poorly understood. Adverse effects from suboptimal rewarming could diminish neuroprotection from hypothermia. Therefore, we tested whether rewarming is associated with apoptosis. Piglets underwent hypoxia-asphyxia followed by normothermic or hypothermic recovery at 2 hours. Hypothermic groups were divided into those with no rewarming, rewarming at 0.5 °C/hour, or rewarming at 4 °C/hour. Neurodegeneration at 29 hours was assessed by hematoxylin and eosin staining, TUNEL assay, and immunoblotting for cleaved caspase-3. Rewarmed piglets had more apoptosis in motor cortex than did those that remained hypothermic after hypoxia-asphyxia. Apoptosis in piriform cortex was greater in hypoxic-asphyxic, rewarmed piglets than in naive/sham piglets. Caspase-3 inhibitor suppressed apoptosis with rewarming. Rapidly rewarmed piglets had more caspase-3 cleavage in cerebral cortex than did piglets that remained hypothermic or piglets that were rewarmed slowly. We conclude that rewarming from therapeutic hypothermia can adversely affect the newborn brain by inducing apoptosis through caspase mechanisms.
Rhesus monkeys (Macaca mulatta) reared during the first year of life without social contact develop persistent stereotyped movements, self-directed behaviors, and psychosocial abnormalities, but neurobiological mechanisms underlying the behaviors of socially deprived (SD) monkeys are unknown. Monkeys were reared in total social deprivation for the first 9 months of life; control monkeys were reared socially (SR) with mothers and peers. Subjects were killed at 19-24 yr of age. Because the behaviors of SD monkeys are reminiscent of changes in striatal or amygdalar function, we used immunocytochemistry for substance P (SP), leucine-enkephalin (LENK), somatostatin, calbindin, and tyrosine hydroxylase (TH) to evaluate qualitatively and quantitatively patterns of neurotransmitter marker immunoreactivity within subcortical regions. In SD monkeys, the chemoarchitecture of the striatum was altered. Neuronal cell bodies and processes immunoreactive for SP and LENK were depleted markedly in patch (striosome) and matrix regions of the caudate nucleus and putamen; the average density of SP-immunoreactive neurons was reduced 58% relative to SR monkeys. Calbindin and TH immunoreactivities were diminished in the matrix of caudate and putamen of SD monkeys. TH-immunoreactive neurons, but not cresyl violet-stained neurons, in the substantia nigra pars compacta were decreased (43%) in SD monkeys. Peptide-immunoreactive terminals were reduced in the globus pallidus and substantia nigra in SD monkeys. The nucleus accumbens was the least affected of striatal regions. Striatal somatostatin immunoreactivity wa qualitatively and quantitatively similar in SD and SR monkeys. Several regions, for example, bed nucleus of the stria terminalis, amygdala, and basal forebrain magnocellular complex, that were in the same sections and are enriched in these markers did not appear altered in SD monkeys, suggesting a regional specificity for vulnerability. The altered chemoarchitecture of some basal ganglia regions in adult monkeys that experienced social deprivation as infants suggests that the postnatal maturation of neurotransmitter phenotypes in some structures is influenced by social environment. Abnormal motor and psychosocial behaviors resulting from this form of social/sensory deprivation may result from alterations in peptidergic and dopaminergic systems within the basal ganglia.
Therapeutic hypothermia is widely used to treat neonatal hypoxic ischemic (HI) brain injuries. However, potentially deleterious effects of delaying the induction of hypothermia and of rewarming on white matter injury remain unclear. We used a piglet model of HI to assess the effects of delayed hypothermia and rewarming on white matter apoptosis. Piglets underwent HI injury or sham surgery followed by normothermic or hypothermic recovery at 2 h. Hypothermic groups were divided into those with no rewarming, slow rewarming at 0.5°C/h, or rapid rewarming at 4°C/h. Apoptotic cells in the subcortical white matter of the motor gyrus, corpus callosum, lateral olfactory tract, and internal capsule at 29 h were identified morphologically and counted by hematoxylin & eosin staining. Cell death was verified by TUNEL assay. White matter neurons were also counted, and apoptotic cells were immunophenotyped with the oligodendrocyte marker 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase). Hypothermia, slow rewarming, and rapid rewarming increased apoptosis in the subcortical white matter relative to normothermia (p<0.05). The number of white matter neurons was not lower in groups with more apoptosis after hypothermia or rapid rewarming, indicating that the apoptosis occurred among glial cells. Hypothermic piglets had more apoptosis in the lateral olfactory tract than those that were rewarmed (p<0.05). The promotion of apoptosis by hypothermia and rewarming in these regions was independent of HI. In the corpus callosum, HI piglets had more apoptosis than shams after normothermia, slow rewarming, and rapid rewarming (p<0.05). Many apoptotic cells were myelinating oligodendrocytes identified by CNPase positivity. Our results indicate that delaying the induction of hypothermia and rewarming are associated with white matter apoptosis in a piglet model of HI; in some regions these temperature effects are independent of HI. Vulnerable cells include myelinating oligodendrocytes. This study identifies a deleterious effect of therapeutic hypothermia in the developing brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.