Benzoates are a class of natural products containing compounds of industrial and strategic importance. In plants, the compounds exist in free form and as conjugates to a wide range of other metabolites such as glucose, which can be attached to the carboxyl group or to specific hydroxyl groups on the benzene ring. These glucosylation reactions have been studied for many years, but to date only one gene encoding a benzoate glucosyltransferase has been cloned. A phylogenetic analysis of sequences in the Arabidopsis genome revealed a large multigene family of putative glycosyltransferases containing a consensus sequence typically found in enzymes transferring glucose to small molecular weight compounds such as secondary metabolites. Ninety of these sequences have now been expressed as recombinant proteins in Escherichia coli, and their in vitro catalytic activities toward benzoates have been analyzed. The data show that only 14 proteins display activity toward 2-hydroxybenzoic acid, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzoic acid. Of these, only two enzymes are active toward 2-hydroxybenzoic acid, suggesting they are the Arabidopsis salicylic acid glucosyltransferases. All of the enzymes forming glucose esters with the metabolites were located in Group L of the phylogenetic tree, whereas those forming O-glucosides were dispersed among five different groups. Catalytic activities were observed toward glucosylation of the 2-, 3-, or 4-hydroxyl group on the ring. To further explore their regioselectivity, the 14 enzymes were analyzed against benzoic acid, 3-hydroxybenzoic acid, 2,3-, 2,4-, 2,5-, and 2,6-dihydroxybenzoic acid. The data showed that glycosylation of specific sites could be positively or negatively influenced by the presence of additional hydroxyl groups on the ring. This study provides new tools for biotransformation reactions in vitro and a basis for engineering benzoate metabolism in plants.
Summary Priming of defence is a strategy employed by plants exposed to stress to enhance resistance against future stress episodes with minimal associated costs on growth. Here, we test the hypothesis that application of priming agents to seeds can result in plants with primed defences. We measured resistance to arthropod herbivores and disease in tomato (Solanum lycopersicum) plants grown from seed treated with jasmonic acid (JA) and/or β‐aminobutryric acid (BABA). Plants grown from JA‐treated seed showed increased resistance against herbivory by spider mites, caterpillars and aphids, and against the necrotrophic fungal pathogen, Botrytis cinerea. BABA seed treatment provided primed defence against powdery mildew disease caused by the biotrophic fungal pathogen, Oidium neolycopersici. Priming responses were long‐lasting, with significant increases in resistance sustained in plants grown from treated seed for at least 8 wk, and were associated with enhanced defence gene expression during pathogen attack. There was no significant antagonism between different forms of defence in plants grown from seeds treated with a combination of JA and BABA. Long‐term defence priming by seed treatments was not accompanied by reductions in growth, and may therefore be suitable for commercial exploitation.
Male sterility in a petunia cytoplasmic male sterile line has been attributed to the early appearance of active callase, a P-1,3-glucanase, in the anther locule. This leads to premature dissolution of the callose walls surrounding the microsporogenous cells. We have mimicked this aspect of the petunia line in transgenic tobacco by engineering the secretion of a modified pathogenesis-related vacuolar P-1,3-glucanase from the tapetum prior to the appearance of callase activity in the locule. Plants expressing the modified glucanase from tapetum-specific promoters exhibited reduced male fertility, ranging from complete to partia1 male sterility. Callose appearance and distribution are normal in the male sterile transgenic plants up to prophase I, whereupon callose is prematurely degraded. Meiosis and cell division occur normally. The resultant microspores have an abnormally thin cell wall that lacks sculpturing. The tapetum shows hypertrophy. Male sterility is probably caused by bursting of the aberrant microspores at a time corresponding to microspore release. These results demonstrate that premature callose degradation is sufficient to cause male sterility and suggest that callose is essential for the formation of a normal microspore cell wall.
Many organisms adapted to live at subzero temperatures express antifreeze proteins that improve their tolerance to freezing. Although structurally diverse, all antifreeze proteins interact with ice surfaces, depress the freezing temperature of aqueous solutions, and inhibit ice crystal growth. A protein purified from carrot shares these functional features with antifreeze proteins of fish. Expression of the carrot complementary DNA in tobacco resulted in the accumulation of antifreeze activity in the apoplast of plants grown at greenhouse temperatures. The sequence of carrot antifreeze protein is similar to that of polygalacturonase inhibitor proteins and contains leucine-rich repeats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.