The interaction between plasmons in metal nanostructures and excitons in layered materials attracts recent interests due to its fascinating properties inherited from the two constituents, e.g., the high tunability on its spectral or spatial properties from the plasmonic component, and the large optical nonlinearity or light emitting properties from the excitonic counterpart. Here, we demonstrate light-emitting plexcitons from the coupling between the neutral excitons in monolayer WSe and highly confined nanocavity plasmons in the nanocube-over-mirror system. We observe, simultaneously, an anticrossing dispersion curve of the hybrid system in the dark-field scattering spectrum and a 1700 times enhancement in the photoluminescence. We attribute the large photoluminescence enhancement to the increased local density of states by both the plasmonic and excitonic constituents in the intermediate coupling regime. In addition, increasing the confinement of the hybrid systems is achieved by shrinking down the size of the hot spot within the gap between the nanocube and the metal film. Numerical calculations reproduce the experimental observations and provide the effective number of excitons taking part in the interaction. This highly compact system provides a room temperature testing platform for quantum cavity electromagnetics at the deep subwavelength scale.
Polarization optics plays a pivotal role in diffractive, refractive, and emerging flat optics, and has been widely employed in contemporary optical industries and daily life. Advanced polarization manipulation leads to robust control of the polarization direction of light. Nevertheless, polarization control has been studied largely independent of the phase or intensity of light. Here, we propose and experimentally validate a Malus-metasurface-assisted paradigm to enable simultaneous and independent control of the intensity and phase properties of light simply by polarization modulation. The orientation degeneracy of the classical Malus's law implies a new degree of freedom and enables us to establish a one-to-many mapping strategy for designing anisotropic plasmonic nanostructures to engineer the Pancharatnam-Berry phase profile, while keeping the continuous intensity modulation unchanged. The proposed Malus metadevice can thus generate a near-field greyscale pattern, and project an independent far-field holographic image using an ultrathin and single-sized metasurface. This concept opens up distinct dimensions for conventional polarization optics, which allows one to merge the functionality of phase manipulation into an amplitudemanipulation-assisted optical component to form a multifunctional nano-optical device without increasing the complexity of the nanostructures. It can empower advanced applications in information multiplexing and encryption, anti-counterfeiting, dual-channel display for virtual/augmented reality, and many other related fields.
The fact that metallic nanostructures are an excellent light receiver and transmitter connects the underlying principles of two widely applied optical processes: surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). A comparative study of SERS and SEF can eliminate the typical unknown quantities of the system and reveal important parameters that cannot be accessed by conventional techniques. Here, we use this simultaneous SERS and SEF technique in a monolayer MoSe 2 coupled plasmonic nanocavity. After optimizing the spatial and the spectral overlaps between excitonic and plasmonic resonances, the SERS and SEF enhancement factors can exceed 10 7 and 6000, respectively, at the same time on the same nanocube. The comparison of the SERS and SEF enhancements allows the estimation of the ultrafast total decay rate of the bright exciton in monolayer MoSe 2 in the nanocavity down to tens of femtoseconds, which is otherwise hard to realize using time-resolved techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.