Identifying genetic determinants of reproductive success may highlight mechanisms underlying fertility and also identify alleles under present-day selection. Using data in 785,604 individuals of European ancestry, we identify 43 genomic loci associated with either number of children ever born (NEB) or childlessness. These loci span diverse aspects of reproductive biology across the life course, including puberty timing, age at first birth, sex hormone regulation and age at menopause. Missense alleles in ARHGAP27 were associated with increased NEB but reduced reproductive lifespan, suggesting a trade-off between reproductive ageing and intensity. As NEB is one component of evolutionary fitness, our identified associations indicate loci under present-day natural selection. Accordingly, we find that NEB-increasing alleles have increased in frequency over the past two generations. Furthermore, integration with data from ancient selection scans identifies a unique example of an allele-FADS1/2 gene locus-that has been under selection for thousands of years and remains under selection today. Collectively, our findings demonstrate that diverse biological mechanisms contribute to reproductive success, implicating both neuro-endocrine and behavioural influences.
The timing of puberty is highly variable and has important consequences for long-term health.Most of our understanding of the genetic control of puberty timing is based on studies in women, as age at menarche is often recorded. Here, we report a multi-trait genome-wide association study for male puberty timing, based on recalled timing of voice breaking and facial hair, with an effective sample size of 205,354 men, nearly four-fold larger than previously reported. We identify 78 independent signals for male puberty timing, including 29 signals not previously associated with puberty in either sex. Novel mechanisms include an unexpected phenotypic and genetic link between puberty timing and natural hair colour, possibly reflecting common effects of pituitary hormones on puberty and pigmentation. Earlier male puberty timing is genetically correlated with several adverse health outcomes and, in Mendelian randomization analyses, shows causal relationships with higher risk of prostate cancer and shorter lifespan. These findings highlight the relationships between puberty timing and later health outcomes, and demonstrate the value of genetic studies of puberty timing in both sexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.