Attractive toxic sugar bait (active ingredient, 1% boric acid) was evaluated against Aedes albopictus Skuse populations in the laboratory, semi-field trials, and field trials in residential communities in St. Augustine, Florida. Laboratory evaluations of boric acid sugar baits applied to the plant Pentas lanceolata (Rubiaceae) demonstrated 100 and 92% mortality of A. albopictus at day 7 and 14, respectively. A semi-field study evaluating the bait application to the upperside or topside of leaves resulted in no significant difference on mortality (P>0.05). Overall combined top and bottom boric acid sugar bait application mortality at day 7 was 95% based on leaf bioassays. Field application of the boric acid sugar baits significantly (P<0.05) decreased adult A. albopictus populations up to day 21 post-treatment compared to the pre-treatment population numbers. A significant reduction in oviposition was demonstrated both at day 7 and 14 post-application (P=0.001) as monitored by ovitraps. Attractive toxic sugar bait application in tropical environments demonstrated efficacy, persistence, and feasibility in controlling A. albopictus populations.
The catastrophic 2010 earthquake in Port-au-Prince, Haiti, led to the large-scale displacement of over 2.3 million people, resulting in rapid and unplanned urbanization in northern Haiti. This study evaluated the impact of this unplanned urbanization on mosquito ecology and vector-borne diseases by assessing land use and change patterns. Land-use classification and change detection were carried out on remotely sensed images of the area for 2010 and 2013. Change detection identified areas that went from agricultural, forest, or bare-land pre-earthquake to newly developed and urbanized areas post-earthquake. Areas to be sampled for mosquito larvae were subsequently identified. Mosquito collections comprised five genera and ten species, with the most abundant species being Culex quinquefasciatus 35% (304/876), Aedes albopictus 27% (238/876), and Aedes aegypti 20% (174/876). All three species were more prevalent in urbanized and newly urbanized areas. Anopheles albimanus, the predominate malaria vector, accounted for less than 1% (8/876) of the collection. A set of spectral indices derived from the recently launched Landsat 8 satellite was used as covariates in a species distribution model. The indices were used to produce probability surfaces maps depicting the likelihood of presence of the three most abundant species within 30 m pixels. Our findings suggest that the rapid urbanization following the 2010 earthquake has increased the amount of area with suitable habitats for urban mosquitoes, likely influencing mosquito ecology and posing a major risk of introducing and establishing emerging vector-borne diseases. Journal of Vector Ecology 40 (1): 46-58. 2015.
The resting behavior of Aedes albopictus was evaluated by aspirating diurnal resting mosquitoes from common landscape vegetation in residential communities in St. Augustine, FL. Energy reserves of the resting mosquitoes were analyzed to determine if there was a correlation between mosquito resting habitat and energy accumulation. Six species of plants were selected and 9 collections of resting mosquitoes were aspirated from each plant using a modified John W. Hock backpack aspirator during June and July 2012. Eight mosquito species were collected, with Ae. albopictus representing 74% of the overall collection. The number of Ae. albopictus collected varied significantly with the species of vegetation. When comparing the vegetation and abundance of resting mosquitoes, the highest percentages of Ae. albopictus were collected resting on Ruellia brittoniana (Mexican petunia), Asplenium platyneuron (fern), Gibasis geniculate (Tahitian bridal veil), followed by Plumba goauriculata (plumbago), Setcreasea pallida (purple heart), and Hibiscus tiliaceus (hibiscus). There were significant differences in lipid and glycogen accumulation based on type of vegetation Ae. albopictus was found resting in. Resting mosquitoes' sugar reserves were not influenced by species of vegetation. However, there was an overall correlation between vegetation that serves as a resting habitat and energy reserve accumulation. The results of our study demonstrate the potential to target specific vegetation for control of diurnal resting mosquitoes.
The efficacy of a new water-based formulation containing 30% permethrin and 30% piperonyl butoxide against laboratory and field populations of Aedes albopictus was evaluated in the laboratory, in semifield experiments, and in residential communities in St. Augustine, FL. In laboratory bottle bioassay, 3 doses (3.18 g/ml, 2.26 g/ml, and 1.59 g/ml) of the permethrin product resulted in 100% mortality of adult mosquitoes in 1 h. In semifield experiments, the insecticide sprayed by the water-based thermal fogger at 381.5 ml/min application rate caused 99% mortality of caged mosquitoes. At 24 h posttreatment in the residential communities, there was 79% and 83% reduction of the natural population (numbers) of adult Ae. albopictus and all adult mosquito species collected in BioGent (BG) sentinel traps baited with a BG lure in the 3 test sites, respectively. There was also a 79% reduction in the number of Ae. albopictus eggs collected in ovitrap used in the treated sites. The reductions were significant for adult Ae. albopictus and all mosquito species at 1 wk posttreatment, but no significant reduction was observed at 2-3 wk posttreatment. These findings demonstrate the effectiveness of the new water-based permethrin product against Ae. albopictus populations in residential communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.