The catastrophic 2010 earthquake in Port-au-Prince, Haiti, led to the large-scale displacement of over 2.3 million people, resulting in rapid and unplanned urbanization in northern Haiti. This study evaluated the impact of this unplanned urbanization on mosquito ecology and vector-borne diseases by assessing land use and change patterns. Land-use classification and change detection were carried out on remotely sensed images of the area for 2010 and 2013. Change detection identified areas that went from agricultural, forest, or bare-land pre-earthquake to newly developed and urbanized areas post-earthquake. Areas to be sampled for mosquito larvae were subsequently identified. Mosquito collections comprised five genera and ten species, with the most abundant species being Culex quinquefasciatus 35% (304/876), Aedes albopictus 27% (238/876), and Aedes aegypti 20% (174/876). All three species were more prevalent in urbanized and newly urbanized areas. Anopheles albimanus, the predominate malaria vector, accounted for less than 1% (8/876) of the collection. A set of spectral indices derived from the recently launched Landsat 8 satellite was used as covariates in a species distribution model. The indices were used to produce probability surfaces maps depicting the likelihood of presence of the three most abundant species within 30 m pixels. Our findings suggest that the rapid urbanization following the 2010 earthquake has increased the amount of area with suitable habitats for urban mosquitoes, likely influencing mosquito ecology and posing a major risk of introducing and establishing emerging vector-borne diseases. Journal of Vector Ecology 40 (1): 46-58. 2015.
Los Angeles County (LAC) low-income communities of color experience uneven asthma rates, evidenced by asthma emergency department visits (AEDV). This has partly been attributed to inequitable exposure to diesel particulate matter (DPM). Promisingly, public parks and open space (PPOS) contribute to DPM mitigation. However, low-income communities of color with limited access to PPOS may be deprived of associated public health benefits. Therefore, this novel study investigates the AEDV, DPM, PPOS nexus to address this public health dilemma and inform public policy in at-risk communities. Optimized Hotspot Analysis was used to examine geographic clustering of AEDVs, DPM, and PPOS at the census tract unit of analysis in LAC. Ordinary Least Squares (OLS) regression analysis was used to examine the extent to which DPM and PPOS predict AEDVs. Finally, Geographic Weighted Regression (GWR) was employed to account for spatial dependence in the global OLS model. Optimized Hotspot Analysis confirmed significant clustering of elevated AEDVs and DPM in census tracts with reduced PPOS. After controlling for pertinent demographic characteristics (poverty, children, race/ethnicity), regression analysis confirmed that DPM was significantly positively associated with AEDVs, whereas PPOS was significantly negatively associated with AEDVs. Furthermore, GWR revealed that 71.5% of LACs census tracts would benefit from DPM reductions and 79.4% would benefit from PPOS increases toward redressing AEDVs. This is the first study to identify AEDV reductions in census tracts with higher concentrations of PPOS. Thus, reducing DPM and increasing PPOS may serve to improve asthma outcomes, particularly in low-income communities of color.
The distribution expansion of important human visceral leishmaniasis (HVL) and sporadic cutaneous leishmaniasis (SCL) vector species, Phlebotomus perfiliewi and P. perniciosus, throughout central Tunisia is a major public health concern. This study was designed to investigate if the expansion of irrigation influences the abundance of sand fly species potentially involved in the transmission of HVL and SCL located in arid bioclimatic regions. Geographic and remote sensing approaches were used to predict the density of visceral leishmaniasis vectors in Tunisia. Entomological investigations were performed in the governorate of Sidi Bouzid, located in the arid bioclimatic region of Tunisia. In 2012, sand flies were collected by CDC light traps located at nine irrigated and nine non-irrigated sites to determine species abundance. Eight species in two genera were collected. Among sand flies of the subgenus Larroussius, P. perfiliewi was the only species collected significantly more in irrigated areas. Trap data were then used to develop Poisson regression models to map the apparent density of important sand fly species as a function of different environmental covariates including climate and vegetation density. The density of P. perfiliewi is predicted to be moderately high in the arid regions. These results highlight that the abundance of P. perfiliewi is associated with the development of irrigated areas and suggests that the expansion of this species will continue to more arid areas of the country as irrigation sites continue to be developed in the region. The continued increase in irrigated areas in the Middle East and North Africa region deserves attention, as it is associated with the spread of L. infantum vector P. perfiliewi. Integrated vector management strategies targeting irrigation structures to reduce sand fly vector populations should be evaluated in light of these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.