Reliable responses were obtained in the assessment of cortical auditory potentials in the neonates assessed with a device for automatic response detection.
Introduction
Mismatch Negativity (MMN) corresponds to a response of the central auditory nervous system.
Objective
The objective of this study is to analyze MMN latencies and amplitudes in normal-hearing adults and compare the results between ears, gender and hand dominance.
Methods
This is a cross-sectional study. Forty subjects participated, 20 women and 20 men, aged 18 to 29 years and having normal auditory thresholds. A frequency of 1000Hz (standard stimuli) and 2000Hz (deviant stimuli) was used to evoked the MMN.
Results
Mean latencies in the right ear were 169.4ms and 175.3ms in the left ear, with mean amplitudes of 4.6µV in the right ear and 4.2µV in the left ear. There was no statistically significant difference between ears. The comparison of latencies between genders showed a statistically significant difference for the right ear, being higher in the men than in women. There was no significant statistical difference between ears for both right-handed and left-handed group. However, the results indicated that the latency of the right ear was significantly higher for the left handers than the right handers. We also found a significant result for the latency of the left ear, which was higher for the right handers.
Conclusion
It was possible to obtain references of values for the MMN. There are no differences in the MMN latencies and amplitudes between the ears. Regarding gender, the male group presented higher latencies in relation to the female group in the right ear. Some results indicate that there is a significant statistical difference of the MMN between right- and left-handed individuals.
Introduction The research in long latency auditory evokes potentials (LLAEP) in newborns is recent because of the cortical structure maturation, but studies note that these potentials may be evidenced at this age and could be considered as indicators of cognitive development.
Purpose To research the exogenous potentials in term and premature infants during their first month of life.
Materials and Methods The sample consisted of 25 newborns, 15 term and 10 premature infants. The infants with gestational age under 37 weeks were considered premature. To evaluate the cortical potentials, the infants remained in natural sleep. The LLAEPs were researched binaurally, through insertion earphones, with frequent /ba/ and rare /ga/ speech stimuli in the intensity of 80 dB HL (decibel hearing level). The frequent stimuli presented a total of 80% of the presentations, and the rare, 20%. The data were statistically analyzed.
Results The average gestational age of the term infants was 38.9 weeks (± 1.3) and for the premature group, 33.9 weeks (± 1.6). It was possible to observe only the potentials P1 and N1 in both groups, but there was no statistically significant difference for the latencies of the components P1 and N1 (p > 0.05) between the groups.
Conclusion It was possible to observe the exogenous components P1 and N1 of the cortical potentials in both term and preterm newborns of no more than 1 month of age. However, there was no difference between the groups.
Objective To establish reference intervals for cognitive potential P300 latency using tone burst stimuli.Methods This study involved 28 participants aged between 18 and 59 years. P300 recordings were performed using a two-channel device (Masbe, Contronic). Electrode placement was as follows: Fpz (ground electrode), Cz (active electrode), M1 and M2 (reference electrodes). Intensity corresponded to 80 dB HL and frequent and rare stimulus frequencies to 1,000Hz and 2,000Hz, respectively. Stimuli were delivered binaurally.Results Mean age of participants was 35 years. Average P300 latency was 305ms.Conclusion Maximum acceptable P300 latency values of 362.5ms (305 + 2SD 28.75) were determined for adults aged 18 to 59 years using the protocol described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.