Fatigue crack growth in NR/BR compound and the effect of two different types of recycled rubber powder (RRP) i.e. micronized cryo-ground 74 μm and ambient-ground 400 μm were studied using fracture mechanics approach. Absolute and relative hysteresis losses using single-edge notch tensile (SENT) specimens were determined with a displacement-controlled strain compensating for permanent set of the samples throughout the Fatigue Crack Growth (FCG) experiments. Results indicated a correlation between absolute/relative hysteresis loss and fatigue crack growth rate under specific dynamic strain amplitudes. Differences in relative hysteresis loss showed that additional energy dissipation, due to multiple new crack surfaces at the crack tip, contributes to the FCG of the RRP compounds. At higher tearing energy, beside other factors affecting the FCG performance of the RRP compounds, both higher absolute and relative hysteresis loss are slightly detrimental to the crack growth rates.
The effect of two different types and particle sizes (micronized cryo-ground 74 μm or ambient-ground 400 μm) of recycled rubber powder (RRP) was studied during fatigue crack growth (FCG) in an NR/BR compound using a fracture mechanics approach. Absolute and relative hysteresis losses using single-edge notch tensile specimens were determined with a displacement-controlled strain compensating for the permanent set of the samples throughout the FCG experiments. Differences in relative hysteresis loss showed that additional energy dissipation, due to multiple new crack surfaces at the crack tip, contributes to the FCG of the RRP compounds. At higher tearing energy, beside other factors affecting the FCG performance of the RRP compounds, both higher absolute and relative hysteresis loss are slightly detrimental to the crack growth rates. At lower tearing energy, the larger RRP-filled compound showed slower, but not significant, different crack growth rates than the NR/BR control compound. Fracture morphologies for NR/BR and RRP-filled compound were associated with different fracture surface topographies at various tearing energies, which revealed the dependency of the crack growth microstructure on the tearing energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.