In car-following procedure, some distances are reserved between the vehicles, through which drivers can avoid collisions with vehicles before and after them in the same lane and keep a reasonable clearance with lateral vehicles. This paper investigates characters of vehicle operating safety in car following state based on required safe distance. To tackle this problem, we probe into required safe distance and car-following model using molecular dynamics, covering longitudinal and lateral safe distance. The model was developed and implemented to describe the relationship between longitudinal safe distance and lateral safe distance under the condition where the leader keeps uniform deceleration. The results obtained herein are deemed valuable for car-following theory and microscopic traffic simulation.
Short-term traffic flow forecasting is one of the key issues in the field of dynamic traffic control and management. Because of the uncertainty and nonlinearity, short-term traffic flow forecasting remains a challenging task. In order to improve the accuracy of short-term traffic flow forecasting, a short-term traffic flow forecasting method based on LSSVM model optimized by GA-PSO hybrid algorithm is put forward. Firstly, the LSSVM model is constructed with combined kernel function. Then the GA-PSO hybrid optimization algorithm is designed to optimize the kernel function parameters efficiently and effectively. Finally, case validation is carried out using inductive loop data collected from the north-south viaduct in Shanghai. The experimental results demonstrate that the proposed GA-PSO-LSSVM model is superior to comparative method.
Connected and Automated Vehicles (CAV) have been rapidly developed, which, inevitably, renders that human-driven and autonomous vehicles share the road. Thus, trajectory prediction is an important research topic, which helps each CAV to efficiently follow a Human-Driven Vehicle (HV). In a wider scope, trajectory prediction, also, helps to improve the throughput of traffic flow and enhance its stability. To realize the trajectory prediction of Connected and Automated Vehicles to Human-Driven Vehicles, a car-following model, which is based on trajectory data, was established. Adding deep neural networks and an Attention mechanism, this paper established a data-driven car-following model, based on CNN-BiLSTM-Attention for CAV, to predict trajectory, by referring to the modeling idea of the traditional car-following model. The trajectory data in the next-generation-simulation (NGSIM) datasets that match the car-following characteristics were selected. In addition, noise-reduction pre-processing of the trajectory data was performed, to make it match the actual car-following situation. Experiments, for selecting the optimal structure of the model and the method of trajectory prediction, were carried out. The data-driven car-following models, such as LSTM, GRU, and CNN-BiLSTM, were selected for comparative analysis of trajectory prediction. The results show that the CNN-BiLSTM-Attention model has the smallest MAE and MSE as well as the largest R2. The CNN-BiLSTM-Attention model has the highest accuracy in vehicle-trajectory prediction. The model can, effectively, realize vehicle-trajectory prediction and provide a theoretical basis for vehicle-trajectory-based velocity guidance of Human-Driven Vehicles. In the future, the model can, also, provide the theoretical basis for Connected and Automated Vehicles, to make car-following decisions in mixed traffic flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.