Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.
Short-time traffic flow prediction is necessary for advanced traffic management system (ATMS) and advanced traveler information system (ATIS). In order to improve the effect of short-term traffic flow prediction, this paper presents a short-term traffic flow multistep prediction method based on similarity search of time series. Firstly, the landmark model is used to represent time series of traffic flow data. Then the input data of prediction model are determined through searching similar time series. Finally, the echo state networks model is used for traffic flow multistep prediction. The performance of the proposed method is measured with expressway traffic flow data collected from loop detectors in Shanghai, China. The experimental results demonstrate that the proposed method can achieve better multistep prediction performance than conventional methods.
Short-term traffic flow prediction is one of the most important issues in the field of adaptive traffic control system and dynamic traffic guidance system. In order to improve the accuracy of short-term traffic flow prediction, a short-term traffic flow local prediction method based on combined kernel function relevance vector machine (CKF-RVM) model is put forward. The C-C method is used to calculate delay time and embedding dimension. The number of neighboring points is determined by use of Hannan-Quinn criteria, and the CKF-RVM model is built based on genetic algorithm. Finally, case validation is carried out using inductive loop data measured from the north–south viaduct in Shanghai. The experimental results demonstrate that the CKF-RVM model is 31.1% and 52.7% higher than GKF-RVM model and GKF-SVM model in the aspect of MAPE. Moreover, it is also superior to the other two models in the aspect of EC.
Short-term traffic flow prediction is an important part of intelligent transportation systems research and applications. For further improving the accuracy of short-time traffic flow prediction, a novel hybrid prediction model (multivariate phase space reconstruction-combined kernel function-least squares support vector machine) based on multivariate phase space reconstruction and combined kernel function-least squares support vector machine is proposed. The CC method is used to determine the optimal time delay and the optimal embedding dimension of traffic variables' (flow, speed, and occupancy) time series for phase space reconstruction. The G-P method is selected to calculate the correlation dimension of attractor which is an important index for judging chaotic characteristics of the traffic variables' series. The optimal input form of combined kernel function-least squares support vector machine model is determined by multivariate phase space reconstruction, and the model's parameters are optimized by particle swarm optimization algorithm. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. The experimental results suggest that the new proposed model yields better predictions compared with similar models (combined kernel function-least squares support vector machine, multivariate phase space reconstruction-generalized kernel function-least squares support vector machine, and phase space reconstruction-combined kernel function-least squares support vector machine), which indicates that the new proposed model exhibits stronger prediction ability and robustness.
Short-term traffic flow forecasting is one of the key issues in the field of dynamic traffic control and management. Because of the uncertainty and nonlinearity, short-term traffic flow forecasting remains a challenging task. In order to improve the accuracy of short-term traffic flow forecasting, a short-term traffic flow forecasting method based on LSSVM model optimized by GA-PSO hybrid algorithm is put forward. Firstly, the LSSVM model is constructed with combined kernel function. Then the GA-PSO hybrid optimization algorithm is designed to optimize the kernel function parameters efficiently and effectively. Finally, case validation is carried out using inductive loop data collected from the north-south viaduct in Shanghai. The experimental results demonstrate that the proposed GA-PSO-LSSVM model is superior to comparative method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.