Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.
Missing traffic data are inevitable due to detector failure or communication failure. Currently, most of imputation methods estimated the missing traffic values by using spatial-temporal information as much as possible. However, it ignores an important fact that spatial-temporal information of the traffic missing data is often incomplete and unavailable. Moreover, most of the existing methods are verified by traffic data from freeway, and their applicability to urban road data needs to be further verified. In this paper, a hybrid method for missing traffic data imputation is proposed using FCM optimized by a combination of PSO algorithm and SVR. In this method, FCM is the basic algorithm and the parameters of FCM are optimized. Firstly, the patterns of missing traffic data are analyzed and the representation of missing traffic data is given using matrix-based data structure. Then, traffic data from urban expressway and urban arterial road are used to analyze spatial-temporal correlation of the traffic data for the determination of the proposed method input. Finally, numerical experiment is designed from three perspectives to test the performance of the proposed method. The experimental results demonstrate that the novel method not only has high imputation precision, but also exhibits good robustness.
Short-time traffic flow prediction is necessary for advanced traffic management system (ATMS) and advanced traveler information system (ATIS). In order to improve the effect of short-term traffic flow prediction, this paper presents a short-term traffic flow multistep prediction method based on similarity search of time series. Firstly, the landmark model is used to represent time series of traffic flow data. Then the input data of prediction model are determined through searching similar time series. Finally, the echo state networks model is used for traffic flow multistep prediction. The performance of the proposed method is measured with expressway traffic flow data collected from loop detectors in Shanghai, China. The experimental results demonstrate that the proposed method can achieve better multistep prediction performance than conventional methods.
Short-term traffic flow prediction is one of the most important issues in the field of adaptive traffic control system and dynamic traffic guidance system. In order to improve the accuracy of short-term traffic flow prediction, a short-term traffic flow local prediction method based on combined kernel function relevance vector machine (CKF-RVM) model is put forward. The C-C method is used to calculate delay time and embedding dimension. The number of neighboring points is determined by use of Hannan-Quinn criteria, and the CKF-RVM model is built based on genetic algorithm. Finally, case validation is carried out using inductive loop data measured from the north–south viaduct in Shanghai. The experimental results demonstrate that the CKF-RVM model is 31.1% and 52.7% higher than GKF-RVM model and GKF-SVM model in the aspect of MAPE. Moreover, it is also superior to the other two models in the aspect of EC.
Vehicles are often caught in dilemma zone when they approach signalized intersections in yellow interval. The existence of dilemma zone which is significantly influenced by driver behavior seriously affects the efficiency and safety of intersections. This paper proposes the driver behavior models in yellow interval by logistic regression and fuzzy decision tree modeling, respectively, based on camera image data. Vehicle’s speed and distance to stop line are considered in logistic regression model, which also brings in a dummy variable to describe installation of countdown timer display. Fuzzy decision tree model is generated by FID3 algorithm whose heuristic information is fuzzy information entropy based on membership functions. This paper concludes that fuzzy decision tree is more accurate to describe driver behavior at signalized intersection than logistic regression model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.