Cystic fibrosis (CF) is a hereditary disease caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). A large number of nearly 2000 reported mutations, including the premature termination codon (PTC) mutations, urgently require new and personalized medicines. We have developed cell-based assays for readthrough modulators of CFTR PTC mutations (or nonsense mutation suppressors), based on the trafficking and surface expression of CFTR. Approximately 85,000 compounds have been screened for two PTC mutations (Y122X and W1282X). The hit rates at the threshold of 50% greater than vehicle response are 2% and 1.4% for CFTR Y122X and CFTR W1282X, respectively. The overlap of the two hit sets at this stringent hit threshold is relatively small. Only ~28% of the hits from the W1282X screen were also hits in the Y122X screen. The overlap increases to ~50% if compounds are included that in the second screen achieve only a less stringent hit criterion, that is, horseradish peroxidase (HRP) activity greater than three standard deviations above the mean of the vehicle. Our data suggest that personalization may not need to address individual genotypes, but that patients with different CFTR PTC mutations could benefit from the same medicines.
The presence of supernumerary centrosomes is prevalent in cancer, where they promote the formation of transient multipolar mitotic spindles. Active clustering of supernumerary centrosomes enables the formation of a functional bipolar spindle that is competent to complete a bipolar division. Disruption of spindle pole clustering in cancer cells promotes multipolar division and generation of non-proliferative daughter cells with compromised viability. Hence molecular pathways required for spindle pole clustering in cells with supernumerary centrosomes, but dispensable in normal cells, are promising therapeutic targets. Here we demonstrate that Aurora A kinase activity is required for spindle pole clustering in cells with extra centrosomes. While cells with two centrosomes are ultimately able to build a bipolar spindle and proceed through a normal cell division in the presence of Aurora A inhibition, cells with supernumerary centrosomes form multipolar and disorganized spindles that are not competent for chromosome segregation. Instead, following a prolonged mitosis, these cells experience catastrophic divisions that result in grossly aneuploid, and non-proliferative daughter cells. Aurora A inhibition in a panel of Acute Myeloid Leukemia cancer cells has a similarly disparate impact on cells with supernumerary centrosomes, suggesting that centrosome number and spindle polarity may serve as predictive biomarkers for response to therapeutic approaches that target Aurora A kinase function.
CFFT-004 is a dual-acting small molecule with independent corrector and potentiator activities that partially rescues F508del-CFTR in recombinant cells and native airway epithelia. The limited efficacy and potency of CFFT-004 suggests that combinations of small molecules targeting different defects in F508del-CFTR might be a more effective therapeutic strategy than a single agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.