This Letter provides evidence for intrinsic longitudinal spin Seebeck effects (LSSEs) that are free from the anomalous Nernst effect (ANE) caused by an extrinsic proximity effect. We report the observation of LSSEs in Au/Y(3)Fe(5)O(12) (YIG) and Pt/Cu/YIG systems, showing that the LSSE appears even when the mechanism of the proximity ANE is clearly removed. In the conventional Pt/YIG structure, furthermore, we separate the LSSE from the ANE by comparing the voltages in different magnetization and temperature-gradient configurations; the ANE contamination was found to be negligibly small even in the Pt/YIG structure.
Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is a flux of spin without an electric charge and its transport reflects spin excitation. We demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.