The magnetoelectric (ME) coupling of cylindrical trilayered composite was studied in this paper. The Ni-lead zirconate titanate (PZT)-Ni trilayered cylindrical composite was synthesized by electro-deposition. The maximum ME voltage coefficient of cylindrical ME composite is 35V/cm Oe, about three times higher than that of the plate trilayered composite with the same raw materials and magnetostrictive-piezoelectric phase thickness ratio. The high ME voltage coefficient of cylindrical composite owes to the self-bound effect of circle. Moreover, the resulting complex condition can induce a double peak in the field dependence of ME coefficient.
The magnetoelectric (ME) coupling of a bilayered Ni–lead zirconate titanate composite structure synthesized by electrodeposition was studied in this paper. The ME voltage coefficient was measured in the range of 1–120kHz as the bias field is parallel to the axial. The results indicate that an electromechanical resonance appears at 59.9kHz. The bilayered cylindrical ME composite exhibits a special field dependence of ME coefficient. Either for the resonant state or the nonresonant state, above 1kOe, the ME voltage coefficient increased linearly with the strengthening of bias field, up to 30V∕cmOe at 8kOe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.