• Clinical features can predict lung metastasis of colorectal cancer patients. • Radiomics analysis outperformed clinical features in assessing the risk of pulmonary metastasis. • A clinical-radiomics nomogram can help clinicians predict lung metastasis in colorectal cancer patients.
Klotho (KL) was originally characterized as an aging suppressor gene, and has been identified as a tumor suppressor gene in a variety of cancers including colon cancer. However, the potential role and molecular events for KL in colon cancer remain unclear. The present study aimed to investigate the expression of KL in human colon cancer by immunohistochemistry, and to analyze the correlation between KL expression and clinicopathological characteristics of patients with colon cancer. Functional analysis after lentivirus-mediated gain of KL expression was used to assess the tumor growth and invasion in colon cancer cells in vitro and in vivo. The rate of KL expression was significantly decreased in cancer tissues compared with that in adjacent non-cancer tissues (ANCT) (60.3 vs.77.9%, P=0.022), and KL expression was negatively associated with Dukes staging (P=0.034) and depth of tumor invasion (P=0.008). Overexpression of KL in vitro inhibited cell proliferative activities and invasive potential in colon cancer cells, companied with decreased expression of p-IGF1R, p-PI3K, p-AKT, PCNA and MMP-2. In addition, the tumor volumes in the HT-29 subcutaneous tumor model treated with lentivirus‑mediated KL vector (Lv-KL) was significantly smaller than those of the negative control (NC) group (P<0.01). Taken together, our findings indicate that the expression of KL is downregulated in human colon caner and correlates with tumor invasion and Dukes staging, while overexpression of KL suppresses growth and invasion through inhibition of IGF1R-mediated PI3K/AKT pathway in colon cancer cells, suggesting that KL may serve as a potential therapeutic target for the treatment of colon cancer.
Our results imply that inactivation of PTEN gene and over-expression of VEGF contribute to the neovascularization and progression of gastric cancer. PTEN-related angiogenesis might be attributed to its up-regulation of VEGF expression. PTEN and VEGF could be used as the markers reflecting the biologic behaviors of tumor and viable targets in therapeutic approaches to inhibit angiogenesis of gastric cancers.
The CXC chemokine receptor 7 (CXCR7) has been reported to be involved in cell growth, metastasis and apoptosis in certain cancers. However, the function and molecular mechanisms of CXCR7 in human colorectal cancer (CRC) are still undefined. In the present study, sixty-eight cases of CRC tissues and corresponding adjacent non-cancer tissues (ANCT) were collected, and the expression of CXCR7 was assessed using immunohistochemistry (IHC) in biopsy samples. Furthermore, CXCR7 gene was silenced by small hairpin RNA-mediated lentiviral vector (Lv-shCXCR7), by transfection into human CRC cells (SW480 and HT-29). The levels of p-ERK, β-arrestin, proliferating cell nuclear antigen (PCNA), matrix metallopeptidase-2 (MMP-2) and caspase-3 (CAS-3) were detected by western blotting. Cell proliferative activities and invasive capability were respectively measured by MTT and Transwell assays. Cell apoptosis was analyzed by flow cytometry. The results demonstrated that CXCR7 expression was significantly upregulated in CRC tissues compared with the ANCT (54.4 vs. 36.8%, P=0.041), and correlated with Dukes staging and depth of invasion (P=0.007; P=0.002). Silencing of CXCR7 gene suppressed cell proliferation and invasion, and induced cell apoptosis in CRC cells with decreased expression of p-ERK, β-arrestin, PCNA and MMP-2 but increased expression of CAS-3. The tumor volumes in the SW480 subcutaneous tumor models treated with Lv-shCXCR7 were significantly smaller than those of the negative control (NC) and PBS groups (P<0.01). In conclusion, our findings indicate that upregulation of CXCR7 expression is associated with tumor invasion, and silencing of the CXCR7 gene represses the development of CRC cells through ERK and β-arrestin pathways, suggesting that CXCR7 may serve as a potential therapeutic target for the treatment of CRC.
Colorectal cancer (CRC) is an aggressive malignancy that has a poor prognosis. 5-Fluorouracil (5-FU) is a first line chemotherapeutic medication used in the treatment of gallbladder cancer; however, the efficacy is below satisfactory. Icariin is a natural compound that is conventionally reported to have activity against a variety of cancers. This study was carried out to investigate the anti-cancer effect of icariin in CRC cells and to determine whether the compound can enhance the antitumour activity of 5-FU. Cell proliferation and apoptosis were measured using an MTT assay and flow cytometry, respectively. The activity of transcription factor NF-κB was determined by EMSA method. The expression of apoptosis- and proliferation-related proteins was determined by western blotting. The in vivo antitumour effect of combination treatment with icariin and 5-FU on CRC was also assessed using a murine model of CRC. Icariin sensitized the CRC cells to 5-FU both in vitro and in vivo. The antitumour activity of icariin and its potentiating effect on the antitumour activity of 5-FU implicated the suppression of NF-κB activity and consequent down-regulation of the gene products regulated by NF-κB. Our results showed that icariin, suppressed tumour growth and enhanced the antitumour activity of 5-FU in CRC by inhibiting NF-κB activity. Therefore, we suggest that combination of icariin with 5-FU might offer a therapeutic benefit to the patients with CRC; however, further studies are required to ascertain this proposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.