Interactions among vascular reflexes evoked from carotid sinuses, carotid bodies, and cardiopulmonary region were examined in anesthetized, atropinized, and respired dogs with aortic nerves cut. The carotid sinuses were perfused at 220, 150, and 40-50 mmHg; the chemoreceptors were stimulated by perfusion with hypoxic hypercapnic blood. Cardiopulmonary vasomotor inhibition was interrupted by vagal cold block. Measurements were made of arterial blood pressure and of kidney and hindlimb vascular resistance. At sinus pressures less than 170-160 mmHg, cardiopulmonary vasomotor inhibition increased with increase in blood volume. At high sinus pressure, interruption of this augmented cardiopulmonary inhibition was as ineffective in changing vascular resistance as interruption of the lesser inhibition present during normovolemia. Chemoreceptor stimulation increased the response to vagal block at intermediate but not at high or low sinus pressure. The studies demonstrate the dominant role of the carotid sinus reflex when the three systems interact and the ineffectiveness of chemoreceptor stimulation when carotid or cardiopulmonary inhibition is maximal.
The APS Journal Legacy Content is the corpus of 100 years of historical scientific research from the American Physiological Society research journals. This package goes back to the first issue of each of the APS journals including the American Journal of Physiology, first published in 1898. The full text scanned images of the printed pages are easily searchable. Downloads quickly in PDF format.
The APS Journal Legacy Content is the corpus of 100 years of historical scientific research from the American Physiological Society research journals. This package goes back to the first issue of each of the APS journals including the American Journal of Physiology, first published in 1898. The full text scanned images of the printed pages are easily searchable. Downloads quickly in PDF format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.