Although studies of both humans and animals suggest detrimental effects of psychological (restraint) stress on reproduction, reports concerning the direct effect of psychological (restraint) stress on the oocyte are few and conflicting. In the present study, a restraint system that allows mice free intake of feed and water while restraining their movement was established, and effects of maternal restraint on oocyte competence were examined by observing embryo development in vitro and in vivo. The results indicated that restraint stress applied to both gonadotropin-stimulated and unstimulated females during oocyte growth and maturation increased their plasma cortisol level but impaired ovulation and oocyte developmental potential. Injection of cortisol also decreased oocyte developmental potential in both stimulated and unstimulated mice. However, whereas restraint stress reduced the plasma follicle-stimulating hormone (FSH) level of unstimulated mice, injection of cortisol did not. Because the stimulated mice had received very high doses of FSH and luteinizing hormone from injection with equine chorionic gonadotropin injection, the results suggested that whereas cortisol acts directly on the ovary to damage the oocyte, restraint stress impairs oocyte competence by actions on both the hypothalamic-pituitary-gonadal and the hypothalamic-pituitary-adrenal axes. However, exposing the cumulus-oocyte complexes (COCs) to physiological levels of cortisol did not affect oocyte nuclear and cytoplasmic maturation in vitro. Thus, cortisol might have impaired ovulation and oocyte potential by an indirect effect on ovarian tissues other than the COCs.
Studies in both humans and animals suggest detrimental effects of psychological stress on reproduction. Although our recent study shows that maternal-restraint stress diminishes oocyte developmental potential, the mechanism behind this effect is unknown. This prompted us to study the potential role of maternal-restraint stress in the genesis of aneuploidy during meiosis I. At 24 h after equine chorionic gonadotropin injection, mice were subjected to restraint stress for 24 h. After the restraint, some mice were killed to recover immature oocytes for in vitro maturation, while others were injected with human chorionic gonadotropin to recover in vivo matured oocytes. Analysis on chromosome complements of both mature oocytes and parthenotes confirmed that maternal restraint increased aneuploidy in both in vivo and in vitro matured oocytes and that the percentage of aneuploid oocytes were three times higher in the earlier matured oocytes than in the later matured ones. Further observations indicated that maternal restraint 1) impaired metaphase I (MI) spindle assembly while inhibiting MAPK activities, 2) accelerated progression of anaphase I while down-regulating the expression of spindle assembly checkpoint (SAC) proteins, and 3) induced intraoocyte oxidative stress. The following possible model was proposed to explain the results. Maternal-restraint stress increased oocyte aneuploidy by impairing MI spindle assembly and decreasing the SAC. Whereas abnormal spindles would affect centromere attachments, a reduction in SAC would accelerate the anaphase I progression. Failure of centromere attachment, together with the hastened anaphase, would result in nondisjunction of the unattached chromosomes. Furthermore, maternal-restraint stress might also impair spindle assembly and SAC function by inducing intraoocyte oxidative stress, which would then reduce MAPK activity, a critical regulator of microtubule assembly and the establishment and maintenance of the SAC during oocyte maturation.
This study examined the role of CRH-induced ovarian cell apoptosis in the restraint stress (RS)-induced impairment of oocyte competence. Oocyte percentages of apoptotic cumulus cells (CCs) did not differ between stressed and control mice before in vitro maturation (IVM) but became significantly higher in stressed mice after IVM without serum, growth factor, and hormone. The level of Bcl2 mRNA decreased significantly in mural granulosa cells (MGCs) and ovarian homogenates after RS. Whereas ovarian estradiol, testosterone, and IGF1 decreased, cortisol and progesterone increased significantly following RS. RS increased the level of CRH in serum, ovary, and oocyte while enhancing the expression of CRHR1 in CCs, MGCs, and thecal cells. RS down-regulated ovarian expression of glucocorticoid receptor and brain-derived neurotrophic factor. Furthermore, CRH supplementation to IVM medium impaired oocyte developmental potential while increasing apoptotic CCs, an effect that was completely overcome by addition of the CRHR1 antagonist antalarmin. Results suggest that RS impaired oocyte competence by increasing CRH but not glucocorticoids. Increased CRH initiated a latent apoptotic program in CCs and oocytes during their intraovarian development, which was executed later during IVM to impair oocyte competence. Thus, elevated CRH interacted with increased CRHR1 on thecal cells and MGCs, reducing the production of testosterone, estrogen, and IGF1 while increasing the level of progesterone. The imbalance between estrogen and progesterone and the decreased availability of growth factors triggered apoptosis of MGCs and facilitated CC expression of CRHR1, which interacted with the oocyte-derived CRH later during IVM to induce CC apoptosis and reduce oocyte competence.
Inhibiting oocyte postovulatory aging is important both for healthy reproduction and for assisted reproduction techniques. Some studies suggest that glucose promotes oocyte meiotic resumption through glycolysis, but others indicate that it does so by means of the pentose phosphate pathway (PPP). Furthermore, although pyruvate was found to prevent oocyte aging, the mechanism is unclear. The present study addressed these issues by using the postovulatory aging oocyte model. The results showed that whereas the oocyte itself could utilize pyruvate or lactate to prevent aging, it could not use glucose unless in the presence of cumulus cells. Glucose metabolism in cumulus cells prevented oocyte aging by producing pyruvate and NADPH through glycolysis and PPP. Whereas PPP was still functioning after inhibition of glycolysis, the glycolysis was completely inactivated after inhibition of PPP. Addition of fructose-6-phosphate, an intermediate product from PPP, alleviated oocyte aging significantly when the PPP was totally inhibited. Lactate prevented oocyte aging through its lactate dehydrogenase-catalyzed oxidation to pyruvate, but pyruvate inhibited oocyte aging by its intramitochondrial metabolism. However, both lactate and pyruvate required mitochondrial electron transport to prevent oocyte aging. The inhibition of oocyte aging by both PPP and pyruvate involved regulation of the intracellular redox status. Together, the results suggest that glucose metabolism in cumulus cells prevented oocyte postovulatory aging by maintaining both energy supply and the intracellular redox potential and that) glycolysis in cumulus cells might be defective, with pyruvate production depending upon the PPP for intermediate products.
Although the predatory stress experimental protocol is considered more psychological than the restraint protocol, it has rarely been used to study the effect of psychological stress on reproduction. Few studies exist on the direct effect of psychological stress to a female on developmental competence of her oocytes, and the direct effect of predatory maternal stress on oocytes has not been reported. In this study, a predatory stress system was first established for mice with cats as predators. Beginning 24 h after injection of equine chorionic gonadotropin, female mice were subjected to predatory stress for 24 h. Evaluation of mouse responses showed that the predatory stress system that we established increased anxiety-like behaviors and plasma cortisol concentrations significantly and continuously while not affecting food and water intake of the mice. In vitro experiments showed that whereas oocyte maturation and Sr2+ activation or fertilization were unaffected by maternal predatory stress, rate of blastocyst formation and number of cells per blastocyst decreased significantly in stressed mice compared to non-stressed controls. In vivo embryo development indicated that both the number of blastocysts recovered per donor mouse and the average number of young per recipient after embryo transfer of blastocysts with similar cell counts were significantly lower in stressed than in unstressed donor mice. It is concluded that the predatory stress system we established was both effective and durative to induce mouse stress responses. Furthermore, predatory stress applied during the oocyte pre-maturation stage significantly impaired oocyte developmental potential while exerting no measurable impact on nuclear maturation, suggesting that cytoplasmic maturation of mouse oocytes was more vulnerable to maternal stress than nuclear maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.