Spermatogonial stem cell transplantation (SSCT) is an experimental technique for transfer of germline between donor and recipient males that could be used as a tool for biomedical research, preservation of endangered species, and dissemination of desirable genetics in food animal populations. To fully realize these potentials, recipient males must be devoid of endogenous germline but possess normal testicular architecture and somatic cell function capable of supporting allogeneic donor stem cell engraftment and regeneration of spermatogenesis. Here we show that male mice, pigs, goats, and cattle harboring knockout alleles of the NANOS2 gene generated by CRISPR-Cas9 editing have testes that are germline ablated but otherwise structurally normal. In adult pigs and goats, SSCT with allogeneic donor stem cells led to sustained donor-derived spermatogenesis. With prepubertal mice, allogeneic SSCT resulted in attainment of natural fertility. Collectively, these advancements represent a major step toward realizing the enormous potential of surrogate sires as a tool for dissemination and regeneration of germplasm in all mammalian species.
The role of cumulus cells (CCs) that surround oocytes in maturation, ovulation, and fertilization has been extensively studied, yet little is known about their role in oocyte aging. Although early studies have shown that when ovulated oocytes are aged in vitro displayed similar morphological alterations as those aged in vivo, a recent study found that vitro culture of mouse oocytes retarded oocyte aging. The objective of this study was to test the hypothesis that CCs would accelerate oocyte aging. During in vitro aging with CCs of both in vivo-matured and in vitro-matured mouse oocytes, activation rates increased, whereas the maturation-promoting factor (MPF) activity decreased significantly as during in vivo aging of the ovulated oocytes. During aging after denudation of CCs, however, activation rates of both in vivo-matured and in vitro-matured oocytes remained low and the MPF activity decreased much more slowly compared to that of oocytes aged with CCs. Although many oocytes aged in vivo and in vitro with CCs showed a partial cortical granule (CG) release, very few cumulus-free oocytes released their CGs during in vitro aging. When denuded oocytes were cultured with cumulus-oocyte-complexes at a 1:2 ratio or on a CC monolayer, activation rates increased, while MPF activity decreased significantly. The results strongly suggested that CCs accelerated the aging progression of both in vivo-matured and in vitro-matured mouse oocytes.
Control of oocyte aging in vitro is important for both human-assisted reproduction and animal embryo technologies because fertilization or artificial activation of aged oocytes results in abnormal development. Interactions between somatic and germ cells are also an important issue in current biological research. The role of cumulus cells (CCs) in maturation, ovulation, and fertilization of oocytes has been extensively studied, yet little is known about their role in oocyte aging. Although our previous study has shown that CCs accelerate the aging progression of mouse oocytes, the mechanism by which CCs accelerate oocyte aging is unknown. In this study, cumulus-denuded mouse oocytes (DOs) were co-cultured with cumulus-oocyte complexes (COCs) or CC monolayer or cultured in medium conditioned with these cells and changes in the susceptibility to activating stimuli and in MPF activity of oocytes were evaluated after different aging treatments. The results showed that culture with or in medium conditioned with COCs or CC monolayer promoted activation of DOs, indicating that a soluble factor is responsible for the aging-promoting effect. The in vivo and in vitro-matured DOs did not differ in responsiveness to the aging-promoting factor (APF). Heat shock did not accelerate oocyte aging unless in the presence of CCs. The production of APF was not affected by the age or maturation system of COCs, but increased with their density and duration of culture. The results strongly suggest that CCs accelerated oocyte aging by secreting a soluble APF into the medium. Further analysis showed that the APF was heat labile but stable to freezing, it had a threshold effective concentration and can be depleted by DOs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.