Changes in germinal vesicle (GV) chromatin configurations during growth and maturation of porcine oocytes were studied using a new method that allows a clearer visualization of both nucleolus and chromatin after Hoechst staining. The GV chromatin of porcine oocytes was classified into five configurations, based on the degree of chromatin condensation, and on nucleolus and nuclear membrane disappearance. While the GV1 to 4 configurations were similar to those reported by previous studies, the GV0 configuration was distinct by the diffuse, filamentous pattern of chromatin in the whole nuclear area. Most of the oocytes were at the GV0 stage in the <1 and 1-1.9 mm follicles, but the GV0 pattern disappeared completely in the 2-2.9 and 3-6 mm follicles. As follicles grew, the number of oocytes with GV1 configurations increased and reached a maximum in the preovulatory follicles 4 hr post-hCG injection. During maturation in vivo, the number of GV1 oocytes decreased while oocytes undergoing GVBD increased. The percentage of oocytes with GV3 and GV4 configurations was constant during oocyte growth except at the 2-2.9 mm follicle stage, but these configurations disappeared completely after hCG injection. On the contrary, the in vitro maturing oocytes showed a large proportion of GV3 and GV4 configurations. There was no significant difference in distribution of chromatin configurations between the nonatretic and atretic follicles, and between oocytes with more than two layers of cumulus cells and those with less than one layer or no cumulus cells. Overall, our results suggested that (i) the GV0 configuration in porcine oocytes corresponded to the "nonsurrounded nucleolus" pattern in mice and other species; (ii) all the oocytes were synchronized at the GV1 stage before GVBD and this pattern might, therefore, represent a nonatretic state; (iii) the GV3 and GV4 configurations might represent stages toward atresia, or transient events prior to GVBD that could be switched toward either ovulation or atresia, depending upon circumstances; (iv) the in vitro systems currently used were not favorable for oocytes to switch toward ovulation (or final maturation); (v) the number of cumulus cells was not correlated with the chromatin configuration of oocytes, indicating that the beneficial effect of cumulus cells on oocyte maturation and development may simply be attributed to their presence during in vitro culture.
Both nuclear transfer and intracytoplasmic sperm injection (ICSI) practice necessitates studies on the spatial relationship between the MII spindle and the first polar bodies (FPB). Although recent observations have shown that the FPB position does not predict accurately the location of the meiotic spindle in metaphase II oocytes of monkey, hamster, and human, detailed studies on FPB deviation and its affecting factors are lacking. Since polar bodies can be used for genetic testing and oocyte quality grading, their life span under different conditions should be studied. The timing of formation and degeneration and the position relative to the MII spindle of the FPB and the factors affecting FPB deviation and degeneration during in vivo and in vitro aging of both in vivo and in vitro matured mouse oocytes were investigated in this study. Mice of the Kun-ming breed were used, and the intact and degenerated FPB were identified through microscopic morphology in combination with propidium iodide (PI) exclusion test and the chromosomes visualized by Hoechst staining. Results are summarized as follows: (i) oocytes started FPB extrusion at 8 hr after the onset of in vivo or in vitro maturation, but the number of FPB reached maximum much later in vitro (14 hr of culture) than in vivo (10 hr post hCG). (ii) Some FPB began to degenerate before ovulation and around 70% became degenerated within 6 hr after maximal nuclear maturation both in vivo and in vitro; they disappeared faster during in vivo than in vitro aging but turned from intact to degenerated at a similar tempo. (iii) Some FPB began to deviate from the MII spindle 10 hr after hCG injection or in vitro culture and the distance between FPB and the spindle increased with time during both in vivo and in vitro aging. (iv) FPB deviated more slowly in the in vitro matured oocytes than in in vivo matured. (v) Denudation performed after FPB extrusion markedly enhanced its deviation. (vi) The perivitelline space (PVS) increased with time during maturation and aging in vivo and in vitro and the values of PVS and the percentages of FPB adjacent to the spindle were significantly negatively correlated. (vii) Cytochalasin B and colchicine had no effect on FPB deviation. (viii) None of the more than 3,500 FPBs observed was found to be dividing or have divided into two cells at any time points before or after ovulation or in vitro maturation. Our results were consistent with the possibility that the displacement of the FPB was a time- and PVS-dependent process, indicating that PVS would increase with time and its formation and enlargement would facilitate the lateral displacement of the degenerating FPB.
Dairy goats are ideal for the transgenic production of therapeutic recombinant proteins. The use of recombinant somatic cell lines for nuclear transfer (NT) allows the introduction of genes by transfection, increases the efficiency of transgenic animal production to 100%, and overcomes the problem of founder mosaicism. Although viable animals have been cloned via NT from somatic cells of 11 species, the efficiency has been extremely low. Both blastomere and somatic cell NT increased fetal loss and perinatal morbidity/mortality in cattle and sheep, but fetal loss and perinatal mortality appear to be relatively low in goats. In this study, we produced cloned goats by NT from cumulus cells and long-term cultured fetal fibroblast cells (FFCs) to abattoir-derived oocytes. NT embryos were constructed from electrofusion of cumulus cells (CCs), FFCs, or skin fibroblast cells (SFCs) with cytoplasts prepared from abattoir-derived ovaries. The NT embryos were activated with an optimized activating protocol (1 min exposure to 2.5 microM ionomycin followed by 2 hr incubation in 2mM 6-DMAP). Two viable cloned kids from CCs and one from long-term cultured FFCs (at passage 20-25) were born. Microsatellite analysis of 10 markers confirmed that all cloned offspring were derived from corresponding donor cells. To our knowledge, the production of cloned goat offspring using abattoir-derived oocytes receiving nuclei from CCs and long-term cultured FFCs has not been reported. The production of viable cloned animals after activation with reduced intensity of ionomycin and 6-DMAP treatment has also not been reported. Loss of cloned embryos was obvious after 45 and 90 days of pregnancy, and a lack of cotyledons, heart defects, and improperly closed abdominal wall were observed in the aborted fetuses and one cloned kid. The fusibility and in vitro developmental potential of embryos reconstructed from FFCs at passage 20-25 were significantly lower than those of embryos reconstructed from FFCs at passage 3-5, and the cloning efficiency of the long-term cultured cells was low (0.5%).
To improve in vitro maturation and to understand the mechanism for meiotic resumption of oocytes, meiotic progression, and its control by hypoxanthine (HX) were studied in goat oocytes. Ovaries were obtained from a local abattoir, and cumulus-oocyte complexes (COCs) and follicular fluid were collected from follicles of different surface diameters (SDs). The meiotic competence and progression of oocytes were observed, and the concentration of HX in the follicular fluid and culture media was measured by high-performance liquid chromatography (HPLC). Full meiotic competence of goat oocytes was acquired in follicles of >/=1.5 mm in SD with 90% of the oocytes developing to metaphase II (MII) stage after 24 hr in culture. The HX concentration in follicular fluid decreased with follicle development, from the highest level of 1.16 mM in =0.5 mm follicles to the lowest level of 0.45 mM in >/=5 mm follicles. HX inhibited meiotic resumption of goat oocytes in a concentration-related manner but this inhibitory effect declined gradually. When we renewed the medium at 4 hr of HX-199 (TCM-199 supplemented with 4 mM HX) culture, the percentage of oocytes with intact germinal vesicle (GV) did not increase but decreased significantly instead. HPLC measurement of HX in the HX-199 culture drops indicated that the HX concentration declined from 0 hr to 4 hr of culture and after medium renewal at 4 hr of culture. By adding dibutyryl cAMP (db-cAMP) at medium renewal, we found that db-cAMP held up the decline of GV percentages. Together, these results were consistent with the possibility that the decline of HX inhibitory effect was not due to HX depletion but rather due to the negative feedback of the metabolites on its further uptake by oocytes. Goat oocytes were capable of normal nuclear maturation and activation after temporal arrest by HX, but prolonged exposure to HX induced spontaneous activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.