The oxazolidinones represent a new class of antimicrobial agents which are active against multidrug-resistant staphylococci, streptococci, and enterococci. Previous studies have demonstrated that oxazolidinones inhibit bacterial translation in vitro at a step preceding elongation but after the charging ofN-formylmethionine to the initiator tRNA molecule. The event that occurs between these two steps is termed initiation. Initiation of protein synthesis requires the simultaneous presence of N-formylmethionine-tRNA, the 30S ribosomal subunit, mRNA, GTP, and the initiation factors IF1, IF2, and IF3. An initiation complex assay measuring the binding of [3H]N-formylmethionyl-tRNA to ribosomes in response to mRNA binding was used in order to investigate the mechanism of oxazolidinone action. Linezolid inhibited initiation complex formation with either the 30S or the 70S ribosomal subunits fromEscherichia coli. In addition, complex formation withStaphylococcus aureus 70S tight-couple ribosomes was inhibited by linezolid. Linezolid did not inhibit the independent binding of either mRNA or N-formylmethionyl-tRNA toE. coli 30S ribosomal subunits, nor did it prevent the formation of the IF2–N-formylmethionyl-tRNA binary complex. The results demonstrate that oxazolidinones inhibit the formation of the initiation complex in bacterial translation systems by preventing formation of theN-formylmethionyl-tRNA–ribosome–mRNA ternary complex.
To assess the potential for emergence of resistance during the use of linezolid, we tested 10 clinical isolates of vancomycin-resistant enterococci (VRE) (four Enterococcus faecalis, five Enterococcus faecium, and one Enterococcus gallinarum) as well as a vancomycin-susceptible control (ATCC 29212) strain of E. faecalis. The enterococci were exposed to doubling dilutions of linezolid for 12 passes. After the final passage, the linezolid plate growing VRE contained a higher drug concentration with E. faecalis than with E. faecium. DNA sequencing of the 23S rRNA genes revealed that linezolid resistance in three E. faecalis isolates was associated with a guanine to uracil transversion at bp 2576, while the one E. faecium isolate for which the MIC was 16 g/ml contained a guanine to adenine transition at bp 2505.
The oxazolidinones are one of the newest classes of antibiotics. They inhibit bacterial growth by interfering with protein synthesis. The mechanism of oxazolidinone action and the precise location of the drug binding site in the ribosome are unknown. We used a panel of photoreactive derivatives to identify the site of action of oxazolidinones in the ribosomes of bacterial and human cells. The in vivo crosslinking data were used to model the position of the oxazolidinone molecule within its binding site in the peptidyl transferase center (PTC). Oxazolidinones interact with the A site of the bacterial ribosome where they should interfere with the placement of the aminoacyl-tRNA. In human cells, oxazolidinones were crosslinked to rRNA in the PTC of mitochondrial, but not cytoplasmic, ribosomes. Interaction of oxazolidinones with the mitochondrial ribosomes provides a structural basis for the inhibition of mitochondrial protein synthesis, which is linked to clinical side effects associated with oxazolidinone therapy.
Pulmonary infection by mucoid, alginate-producing Pseudomonas aeruginosa is the leading cause of mortality among patients suffering from cystic fibrosis. Alginate-producing P. aeruginosa is uniquely associated with the environment of the cystic fibrosis-affected lung, where alginate is believed to increase resistance to both the host immune system and antibiotic therapy. Recent evidence indicates that P. aeruginosa is most resistant to antibiotics when the infecting cells are present as a biofilm, as they appear to be in the lungs of cystic fibrosis patients. Inhibition of the protective alginate barrier with nontoxic compounds targeted against alginate biosynthetic and regulatory proteins may prove useful in eradicating P. aeruginosa from this environment. Our research has dealt with elucidating the biosynthetic pathway and regulatory mechanism(s) responsible for alginate synthesis by P. aeruginosa. This review summarizes reports on the role of alginate in cystic fibrosis-associated pulmonary infections caused by P. aeruginosa and provides details about the biosynthesis and regulation of this exopolysaccharide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.