The oxazolidinones represent a new class of antimicrobial agents which are active against multidrug-resistant staphylococci, streptococci, and enterococci. Previous studies have demonstrated that oxazolidinones inhibit bacterial translation in vitro at a step preceding elongation but after the charging ofN-formylmethionine to the initiator tRNA molecule. The event that occurs between these two steps is termed initiation. Initiation of protein synthesis requires the simultaneous presence of N-formylmethionine-tRNA, the 30S ribosomal subunit, mRNA, GTP, and the initiation factors IF1, IF2, and IF3. An initiation complex assay measuring the binding of [3H]N-formylmethionyl-tRNA to ribosomes in response to mRNA binding was used in order to investigate the mechanism of oxazolidinone action. Linezolid inhibited initiation complex formation with either the 30S or the 70S ribosomal subunits fromEscherichia coli. In addition, complex formation withStaphylococcus aureus 70S tight-couple ribosomes was inhibited by linezolid. Linezolid did not inhibit the independent binding of either mRNA or N-formylmethionyl-tRNA toE. coli 30S ribosomal subunits, nor did it prevent the formation of the IF2–N-formylmethionyl-tRNA binary complex. The results demonstrate that oxazolidinones inhibit the formation of the initiation complex in bacterial translation systems by preventing formation of theN-formylmethionyl-tRNA–ribosome–mRNA ternary complex.
The endogenous cannabinoid (endocannabinoid) anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH). Pharmacological blockade of FAAH has emerged as a potentially attractive strategy for augmenting endocannabinoid signaling and retaining the beneficial effects of cannabinoid receptor activation, while avoiding the undesirable side effects, such as weight gain and impairments in cognition and motor control, observed with direct cannabinoid receptor 1 agonists. Here, we report the detailed mechanistic and pharmacological characterization of N-pyridazin-3-yl-4-(3-{[5-(trifluoromethyl)pyridin-2-yl]oxy}benzylidene) piperidine-1-carboxamide (PF-04457845), a highly efficacious and selective FAAH inhibitor. Mechanistic studies confirm that PF-04457845 is a time-dependent, covalent FAAH inhibitor that carbamylates FAAH's catalytic serine nucleophile. PF-04457845 inhibits human FAAH with high potency (k inact /K i ϭ 40,300 M Ϫ1 s Ϫ1 ; IC 50 ϭ 7.2 nM) and is exquisitely selective in vivo as determined by activity-based protein profiling. Oral administration of PF-04457845 produced potent antinociceptive effects in both inflammatory [complete Freund's adjuvant (CFA)] and noninflammatory (monosodium iodoacetate) pain models in rats, with a minimum effective dose of 0.1 mg/kg (CFA model). PF-04457845 displayed a long duration of action as a single oral administration at 1 mg/kg showed in vivo efficacy for 24 h with a concomitant near-complete inhibition of FAAH activity and maximal sustained elevation of anandamide in brain. Significantly, PF-04457845-treated mice at 10 mg/kg elicited no effect in motility, catalepsy, and body temperature. Based on its exceptional selectivity and in vivo efficacy, combined with long duration of action and optimal pharmacokinetic properties, PF-04457845 is a clinical candidate for the treatment of pain and other nervous system disorders.
The oxazolidinones are one of the newest classes of antibiotics. They inhibit bacterial growth by interfering with protein synthesis. The mechanism of oxazolidinone action and the precise location of the drug binding site in the ribosome are unknown. We used a panel of photoreactive derivatives to identify the site of action of oxazolidinones in the ribosomes of bacterial and human cells. The in vivo crosslinking data were used to model the position of the oxazolidinone molecule within its binding site in the peptidyl transferase center (PTC). Oxazolidinones interact with the A site of the bacterial ribosome where they should interfere with the placement of the aminoacyl-tRNA. In human cells, oxazolidinones were crosslinked to rRNA in the PTC of mitochondrial, but not cytoplasmic, ribosomes. Interaction of oxazolidinones with the mitochondrial ribosomes provides a structural basis for the inhibition of mitochondrial protein synthesis, which is linked to clinical side effects associated with oxazolidinone therapy.
Oxazolidinone antibiotics inhibit bacterial protein synthesis by interacting with the large ribosomal subunit. The structure and exact location of the oxazolidinone binding site remain obscure, as does the manner in which these drugs inhibit translation. To investigate the drug-ribosome interaction, we selected Escherichia coli oxazolidinone-resistant mutants, which contained a randomly mutagenized plasmid-borne rRNA operon. The same mutation, G2032 to A, was identified in the 23S rRNA genes of several independent resistant isolates. Engineering of this mutation by site-directed mutagenesis in the wild-type rRNA operon produced an oxazolidinone resistance phenotype, establishing that the G2032A substitution was the determinant of resistance. Engineered U and C substitutions at G2032, as well as a G2447-to-U mutation, also conferred resistance to oxazolidinone. All the characterized resistance mutations were clustered in the vicinity of the central loop of domain V of 23S rRNA, suggesting that this rRNA region plays a major role in the interaction of the drug with the ribosome. Although the central loop of domain V is an essential integral component of the ribosomal peptidyl transferase, oxazolidinones do not inhibit peptide bond formation, and thus these drugs presumably interfere with another activity associated with the peptidyl transferase center.During the course of evolution, a disproportionately large number of natural antibiotics have been selected to act upon the ribosome. In the majority of cases, these drugs bind to ribosomes by interacting directly with rRNA (8). Due to the presence of multiple copies of rRNA genes in most species, it is difficult for a sensitive organism to develop resistance by mutating the antibiotic binding site, which is probably one of the main reasons why the ribosome has been repeatedly selected as an antibiotic target.Conditions created by the extensive and sometimes uncontrolled use of natural and synthetic antibiotics for antimicrobial therapy have promoted the selection and rapid spread of resistant pathogens that exhibit high tolerance to many drugs, including those which are targeted against the ribosome. Although the occurrence of antibiotic resistance mutations in rRNA genes is fairly rare in comparison with other types of resistance, a number of such cases have been reported, especially in those pathogens which contain only one or two copies of rRNA operons in their chromosome (B. Vester and S. Douthwaite, submitted for publication).The rapidly growing incidence of drug resistance in pathogenic bacteria urges the development of new antibiotics. Several new drugs targeted against the ribosome are currently being developed, including the oxazolidinones (3, 18). After first being identified as prospective antimicrobial agents in 1987 (32), oxazolidinones were abandoned for some time due to their high toxicity. Later on, new derivatives with superior pharmacological properties were found (3, 16), and recently one of the oxazolidinone antibiotics, linezolid (Fig. 1A), has ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.