Abstract. For the foreseeable future, plant breeding methodology will continue to unfold as a practical application of the scaling of quantitative biology. These efforts to increase the effective scale of breeding programs will focus on the immediate and long-term needs of society. The foundations of the quantitative dimension will be integration of quantitative genetics, statistics, gene-to-phenotype knowledge of traits embedded within crop growth and development models. The integration will be enabled by advances in quantitative genetics methodology and computer simulation. The foundations of the biology dimension will be integrated experimental and functional gene-to-phenotype modelling approaches that advance our understanding of functional germplasm diversity, and gene-to-phenotype trait relationships for the native and transgenic variation utilised in agricultural crops. The trait genetic knowledge created will span scales of biology, extending from molecular genetics to multi-trait phenotypes embedded within evolving genotype-environment systems. The outcomes sought and successes achieved by plant breeding will be measured in terms of sustainable improvements in agricultural production of food, feed, fibre, biofuels and other desirable plant products that meet the needs of society. In this review, examples will be drawn primarily from our experience gained through commercial maize breeding. Implications for other crops, in both the private and public sectors, will be discussed.
The effectiveness of breeding strategies to increase drought resistance in crops could be increased further if some of the complexities in gene-to-phenotype (G → P) relations associated with epistasis, pleiotropy, and genotype-by-environment interactions could be captured in realistic G → P models, and represented in a quantitative manner useful for selection. This paper outlines a promising methodology. First, the concept of landscapes was extended from the study of fitness landscapes used in evolutionary genetics to the characterization of yield-trait-performance landscapes for agricultural environments and applications in plant breeding. Second, the E(NK) model of trait genetic architecture was extended to incorporate biophysical, physiological, and statistical components. Third, a graphical representation is proposed to visualize the yield-trait performance landscape concept for use in selection decisions. The methodology was demonstrated at a particular stage of a maize breeding programme with the objective of improving the drought tolerance of maize hybrids for the US Western Corn-Belt. The application of the framework to the genetic improvement of drought tolerance in maize supported selection of Doubled Haploid (DH) lines with improved levels of drought tolerance based on physiological genetic knowledge, prediction of test-cross yield within the target population of environments, and their predicted potential to sustain further genetic progress with additional cycles of selection. The existence of rugged yield-performance landscapes with multiple peaks and intervening valleys of lower performance, as shown in this study, supports the proposition that phenotyping strategies, and the directions emphasized in genomic selection can be improved by creating knowledge of the topology of yield-trait performance landscapes.
Complex quantitative traits of plants as measured on collections of genotypes across multiple environments are the outcome of processes that depend in intricate ways on genotype and environment simultaneously. For a better understanding of the genetic architecture of such traits as observed across environments, genotype-by-environment interaction should be modeled with statistical models that use explicit information on genotypes and environments. The modeling approach we propose explains genotype-by-environment interaction by differential quantitative trait locus (QTL) expression in relation to environmental variables. We analyzed grain yield and grain moisture for an experimental data set composed of 976 F 5 maize testcross progenies evaluated across 12 environments in the U.S. corn belt during 1994 and 1995. The strategy we used was based on mixed models and started with a phenotypic analysis of multienvironment data, modeling genotype-by-environment interactions and associated genetic correlations between environments, while taking into account intraenvironmental error structures. The phenotypic mixed models were then extended to QTL models via the incorporation of marker information as genotypic covariables. A majority of the detected QTL showed significant QTL-by-environment interactions (QEI). The QEI were further analyzed by including environmental covariates into the mixed model. Most QEI could be understood as differential QTL expression conditional on longitude or year, both consequences of temperature differences during critical stages of the growth.T HE incidence of genotype-by-environment interactions (GEI) for quantitative traits has important implications for any attempts to understand the genetic architecture of these traits by mapping quantitative trait loci (QTL) and also for the effectiveness of attempts to improve these traits by both conventional and markerassisted selection (MAS) breeding strategies. The literature on GEI and QTL-by-environment interactions (QEI) for quantitative traits in maize is ambiguous, with evidence in favor (Moreau et al. 2004) and against (Ledeaux et al. 2006) their importance. The diversity of the results for the importance of QEI for quantitative traits in crop plants observed in the literature strongly suggests that explicit testing for their presence, magnitude, and form is a critical step in any attempt to understand the genetic architecture of these traits. Further, theoretical considerations of the impact of different forms of QEI on the outcomes of MAS in plant breeding (Podlich et al. 2004;Cooper et al. 2002Cooper et al. , 2005Cooper et al. , 2006 motivate the development of methods for explicitly studying the importance of QEI as a component of the genetic architecture of quantitative traits.When QEI occurs and environmental covariables derived from geographical and weather information are available, QTL effects across environments can be tested for dependence on particular environmental covariables (Crossa et al. 1999;Malosetti et al. 2004;Varga...
In quantitative genetics, computer simulation is commonly used to evaluate alternative plant breeding strate-Functional genomics is the systematic study of genome-wide effects gies on the basis of stochastic descriptions of gene action of gene expression on organism growth and development with the ultimate aim of understanding how networks of genes influence traits. and interaction (e.g., Hospital et al., 1997; Podlich and Here, we use a dynamic biophysical cropping systems model (APSIM-Cooper, 1998). Our aim is to demonstrate how linkages Sorg) to generate a state space of genotype performance based on between gene action and crop performance in dryland 15 genes controlling four adaptive traits and then search this space S. Chapman, CSIRO Plant Industry, Long Pocket Lab., 120 Meiers Rd., Indooroopilly, 4068, QLD, Australia; M. Cooper and D. Podlich, levels of organization. Until then, we need to deal with School of Land and Food Sci., The University of Queensland, Brisadaptive traits at a more integrative level (i.e., traits bane, 4072, QLD, Australia; and G. Hammer, Agric. Prod. Syst. Res. observable at the plant or crop level) while beginning Unit, Queensland
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.