Complex quantitative traits of plants as measured on collections of genotypes across multiple environments are the outcome of processes that depend in intricate ways on genotype and environment simultaneously. For a better understanding of the genetic architecture of such traits as observed across environments, genotype-by-environment interaction should be modeled with statistical models that use explicit information on genotypes and environments. The modeling approach we propose explains genotype-by-environment interaction by differential quantitative trait locus (QTL) expression in relation to environmental variables. We analyzed grain yield and grain moisture for an experimental data set composed of 976 F 5 maize testcross progenies evaluated across 12 environments in the U.S. corn belt during 1994 and 1995. The strategy we used was based on mixed models and started with a phenotypic analysis of multienvironment data, modeling genotype-by-environment interactions and associated genetic correlations between environments, while taking into account intraenvironmental error structures. The phenotypic mixed models were then extended to QTL models via the incorporation of marker information as genotypic covariables. A majority of the detected QTL showed significant QTL-by-environment interactions (QEI). The QEI were further analyzed by including environmental covariates into the mixed model. Most QEI could be understood as differential QTL expression conditional on longitude or year, both consequences of temperature differences during critical stages of the growth.T HE incidence of genotype-by-environment interactions (GEI) for quantitative traits has important implications for any attempts to understand the genetic architecture of these traits by mapping quantitative trait loci (QTL) and also for the effectiveness of attempts to improve these traits by both conventional and markerassisted selection (MAS) breeding strategies. The literature on GEI and QTL-by-environment interactions (QEI) for quantitative traits in maize is ambiguous, with evidence in favor (Moreau et al. 2004) and against (Ledeaux et al. 2006) their importance. The diversity of the results for the importance of QEI for quantitative traits in crop plants observed in the literature strongly suggests that explicit testing for their presence, magnitude, and form is a critical step in any attempt to understand the genetic architecture of these traits. Further, theoretical considerations of the impact of different forms of QEI on the outcomes of MAS in plant breeding (Podlich et al. 2004;Cooper et al. 2002Cooper et al. , 2005Cooper et al. , 2006 motivate the development of methods for explicitly studying the importance of QEI as a component of the genetic architecture of quantitative traits.When QEI occurs and environmental covariables derived from geographical and weather information are available, QTL effects across environments can be tested for dependence on particular environmental covariables (Crossa et al. 1999;Malosetti et al. 2004;Varga...
Heritability is a central parameter in quantitative genetics, from both an evolutionary and a breeding perspective. For plant traits heritability is traditionally estimated by comparing within-and between-genotype variability. This approach estimates broad-sense heritability and does not account for different genetic relatedness. With the availability of high-density markers there is growing interest in marker-based estimates of narrow-sense heritability, using mixed models in which genetic relatedness is estimated from genetic markers. Such estimates have received much attention in human genetics but are rarely reported for plant traits. A major obstacle is that current methodology and software assume a single phenotypic value per genotype, hence requiring genotypic means. An alternative that we propose here is to use mixed models at the individual plant or plot level. Using statistical arguments, simulations, and real data we investigate the feasibility of both approaches and how these affect genomic prediction with the best linear unbiased predictor and genome-wide association studies. Heritability estimates obtained from genotypic means had very large standard errors and were sometimes biologically unrealistic. Mixed models at the individual plant or plot level produced more realistic estimates, and for simulated traits standard errors were up to 13 times smaller. Genomic prediction was also improved by using these mixed models, with up to a 49% increase in accuracy. For genome-wide association studies on simulated traits, the use of individual plant data gave almost no increase in power. The new methodology is applicable to any complex trait where multiple replicates of individual genotypes can be scored. This includes important agronomic crops, as well as bacteria and fungi.KEYWORDS marker-based estimation of heritability; GWAS; genomic prediction; Arabidopsis thaliana; one-vs. two-stage approaches N ARROW-SENSE heritability is an important parameter in quantitative genetics, determining the response to selection and representing the proportion of phenotypic variance that is due to additive genetic effects (Jacquard 1983;Ritland 1996;Visscher et al. 2006Visscher et al. , 2008Holland et al. 2010;Sillanpaa 2011). This definition of heritability goes back to Fisher (1918) and Wright (1920) almost a century ago. In plant species for which replicates of the same genotype are available (inbred lines, doubled haploids, clones), a different form of heritability, broadsense heritability, is traditionally estimated by the intraclass correlation coefficient for genotypic effects, using estimates for within-and between-genotype variance. Broad-sense heritability is also referred to as repeatability and gives the proportion of phenotypic variance explained by heritable (additive) and nonheritable (dominance, epistasis) genetic variance.With the arrival of high-density genotyping there is growing interest in marker-based estimation of narrow-sense heritability (WTCCC 2007;Yang et al. 2010Yang et al. , 2011Vatti...
Prediction of the phenotypes for a set of genotypes across multiple environments is a fundamental task in any plant breeding program. Genomic prediction (GP) can assist selection decisions by combining incomplete phenotypic information over multiple environments (MEs) with dense sets of markers. We compared a range of ME‐GP models differing in the way environment‐specific genetic effects were modeled. Information among environments was shared either implicitly via the response variable, or by the introduction of explicit environmental covariables. We discuss the models not only in the light of their accuracy, but also in their ability to predict the different parts of the incomplete genotype × environment interaction (G × E) table: (Gt; Et), (Gu; Et), (Gt; Eu), and (Gu; Eu), where G is genotype, E is environment, both tested (t; in one or more instances) and untested (u). Using the ‘Steptoe’ × ‘Morex’ barley (Hordeum vulgare L.) population as an example, we show the advantage of ME‐GP models that account for G × E. In addition, for our example data set, we show that for prediction in the most challenging scenario of untested environments (Eu), the use of explicit environmental information is preferable over the simpler approach of predicting from a main effects model. Besides producing the most general ME‐GP model, the use of environmental covariables naturally links with ecophysiological and crop‐growth models (CGMs) for G × E. We conclude with a list of future research topics in ME‐GP, where we see CGMs playing a central role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.