Timing of germination is presumably under strong natural selection as it determines the environmental conditions in which a plant germinates and initiates its postembryonic life cycle. To investigate how seed dormancy is controlled, quantitative trait loci (QTL) analyses has been performed in six Arabidopsis thaliana recombinant inbred line populations by analyzing them simultaneously using a mixed model QTL approach. The recombinant inbred line populations were derived from crosses between the reference accession Landsberg erecta (Ler) and accessions from different world regions. In total, 11 delay of germination (DOG) QTL have been identified, and nine of them have been confirmed by near isogenic lines (NILs). The absence of strong epistatic interactions between the different DOG loci suggests that they affect dormancy mainly by distinct genetic pathways. This was confirmed by analyzing the transcriptome of freshly harvested dry seeds of five different DOG NILs. All five DOG NILs showed discernible and different expression patterns compared with the expression of their genetic background Ler. The genes identified in the different DOG NILs represent largely different gene ontology profiles. It is proposed that natural variation for seed dormancy in Arabidopsis is mainly controlled by different additive genetic and molecular pathways rather than epistatic interactions, indicating the involvement of several independent pathways. recombinant inbred lines | quantitative trait loci analyses | near isogenic lines | transcriptome analyses S eed dormancy is an important adaptive trait that together with flowering time is a primary component of the different life history strategies of plants (1). Seasonal timing of germination might well be a stronger factor conditioning the flowering time of Arabidopsis in the field than variation in the genetic basis for flowering time itself (2). Seed dormancy controls the timing of germination by arresting growth and development, despite the presence of favorable environmental conditions to complete germination. Specific environmental and developmental triggers can overcome this arrest. Environmental factors can act during seed development on the mother plant, during seed storage (i.e., after-ripening; AR) and in mature imbibed seeds. The various aspects of seed dormancy and germination have been extensively reviewed recently (3-6). In addition, it has been shown that there is considerable variation for seed dormancy in nature (7-9). The identification of the genes underlying this natural variation for seed dormancy may help to further understand the mechanisms involved in this process. At the same time, it provides insight into the way nature shaped genetic variability for this trait during adaptive evolution. A common approach to discover genes that control quantitative traits is the use of whole-genome scans to identify quantitative trait loci (QTL). These analyses provide estimates of several genetic parameters that underlie phenotypic variation, including the number of loci, th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.