The arrangement of habitat features via historical or contemporary events can strongly influence genomic and demographic connectivity, and in turn affect levels of genetic diversity and resilience of populations to environmental perturbation. The rusty blackbird (Euphagus carolinus) is a forested wetland habitat specialist whose population size has declined sharply (78%) over recent decades. The species breeds across the expansive North American boreal forest region, which contains a mosaic of habitat conditions resulting from active natural disturbance regimes and glacial history. We used landscape genomics to evaluate how past and present landscape features have shaped patterns of genetic diversity and connectivity across the species’ breeding range. Based on reduced-representation genomic and mitochondrial DNA, genetic structure followed four broad patterns influenced by both historical and contemporary forces: (1) an east–west partition consistent with vicariance during the last glacial maximum; (2) a potential secondary contact zone between eastern and western lineages at James Bay, Ontario; (3) insular differentiation of birds on Newfoundland; and (4) restricted regional gene flow among locales within western and eastern North America. The presence of genomic structure and therefore restricted dispersal among populations may limit the species’ capacity to respond to rapid environmental change.
Once exceptionally abundant, the Rusty Blackbird (Euphagus carolinus) has declined precipitously over at least the last century. The species breeds across the Boreal forest, where it is so thinly distributed across such remote areas that it is extremely challenging to monitor or research, hindering informed conservation. As such, we employed a targeted citizen science effort on the species’ wintering grounds in the more (human) populated southeast United States: the Rusty Blackbird Winter Blitz. Using a MaxEnt machine learning framework, we modeled patterns of occurrence of small, medium, and large flocks (<20, 20–99, and >99 individuals, respectively) in environmental space using both Blitz and eBird data. Our primary objective was to determine environmental variables that best predict Rusty Blackbird occurrence, with emphasis on (1) examining differences in key environmental predictors across flock sizes, (2) testing whether environmental niche breadth decreased with flock size, and (3) identifying regions with higher predicted occurrence (hotspots). The distribution of flocks varied across environmental predictors, with average minimum temperature (~2 °C for medium and large flocks) and proportional coverage of floodplain forest having the largest influence on occurrence. Environmental niche breadth decreased with increasing flock size, suggesting an increasingly restrictive range of environmental conditions capable of supporting larger flocks. We identified large hotspots in floodplain forests in the Lower Mississippi Alluvial Valley, the South Atlantic Coastal Plain, and the Black Belt Prairie.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.