Compiling, deploying and utilising large-scale databases that integrate environmental and economic data have traditionally been labour- and cost-intensive processes, hindered by the large amount of disparate and misaligned data that must be collected and harmonised. The Australian Industrial Ecology Virtual Laboratory (IELab) is a novel, collaborative approach to compiling large-scale environmentally extended multi-region input-output (MRIO) models. The utility of the IELab product is greatly enhanced by avoiding the need to lock in an MRIO structure at the time the MRIO system is developed. The IELab advances the idea of the "mother-daughter" construction principle, whereby a regionally and sectorally very detailed "mother" table is set up, from which "daughter" tables are derived to suit specific research questions. By introducing a third tier - the "root classification" - IELab users are able to define their own mother-MRIO configuration, at no additional cost in terms of data handling. Customised mother-MRIOs can then be built, which maximise disaggregation in aspects that are useful to a family of research questions. The second innovation in the IELab system is to provide a highly automated collaborative research platform in a cloud-computing environment, greatly expediting workflows and making these computational benefits accessible to all users. Combining these two aspects realises many benefits. The collaborative nature of the IELab development project allows significant savings in resources. Timely deployment is possible by coupling automation procedures with the comprehensive input from multiple teams. User-defined MRIO tables, coupled with high performance computing, mean that MRIO analysis will be useful and accessible for a great many more research applications than would otherwise be possible. By ensuring that a common set of analytical tools such as for hybrid life-cycle assessment is adopted, the IELab will facilitate the harmonisation of fragmented, dispersed and misaligned raw data for the benefit of all interested parties.
Phishing activity has recently been focused on social networking sites as a more effective way of exploiting not only the technology but also the trust that may exist between members in a social network. In this paper, a novel method for profiling phishing activity from an analysis of phishing emails is proposed. Profiling is useful in determining the activity of an individual or a particular group of phishers. Work in the area of phishing is usually aimed at detection of phishing emails. In this paper, we concentrate on profiling as distinct from detection of phishing emails. We formulate the profiling problem as a multi-label classification problem using the hyperlinks in the phishing emails as features and structural properties of emails along with whois (i.e. DNS) information on hyperlinks as profile classes. Further, we generate profiles based on the classifier predictions. Thus, classes become elements of profiles. We employ a boosting algorithm (AdaBoost) as well as SVM to generate multi-label class predictions on three different datasets created from hyperlink information in phishing emails. These predictions are further utilized to generate complete profiles of these emails. Results show that profiling can be done with quite high accuracy using hyperlink information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.