BackgroundAs more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs.ObjectiveTo attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence.MethodsA multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method.ResultsThe process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models.ConclusionsA set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community.
The endomorphism monoids of graphs have been actively investigated. They are convenient tools expressing asymmetries of the graphs. One of the most important classes of graphs considered in this framework is that of Cayley graphs. Our paper proposes a new method of using Cayley graphs for classification of data. We give a survey of recent results devoted to the Cayley graphs also involving their endomorphism monoids.
Big data analytics and business analytics are disruptive technology and innovative solution for enterprise development. However, what is the relationship between big data analytics and business analytics? What is the relationship between business analytics and enterprise information systems (EIS)? How can business analytics enhance the development of EIS? These are still big issues for EIS development. This paper addresses these three issues by proposing an ontology of business analytics, presenting an analytics service-oriented architecture (ASOA) and applying ASOA to EIS, where our surveyed data analysis showed that the proposed ASOA can enhance to develop EIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.