Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery algorithm called CoSaMP that delivers the same guarantees as the best optimization-based approaches. Moreover, this algorithm offers rigorous bounds on computational cost and storage. It is likely to be extremely efficient for practical problems because it requires only matrix-vector multiplies with the sampling matrix. For compressible signals, the running time is just O(N log 2 N ), where N is the length of the signal.
This article presents novel results concerning the recovery of signals from undersampled data in the common situation where such signals are not sparse in an orthonormal basis or incoherent dictionary, but in a truly redundant dictionary. This work thus bridges a gap in the literature and shows not only that compressed sensing is viable in this context, but also that accurate recovery is possible via an 1 -analysis optimization problem. We introduce a condition on the measurement/sensing matrix, which is a natural generalization of the now well-known restricted isometry property, and which guarantees accurate recovery of signals that are nearly sparse in (possibly) highly overcomplete and coherent dictionaries. This condition imposes no incoherence restriction on the dictionary and our results may be the first of this kind. We discuss practical examples and the implications of our results on those applications, and complement our study by demonstrating the potential of 1 -analysis for such problems.
Abstract. This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements -L 1 -minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of L 1 -minimization. Our algorithm ROMP reconstructs a sparse signal in a number of iterations linear in the sparsity, and the reconstruction is exact provided the linear measurements satisfy the Uniform Uncertainty Principle.
Abstract. We demonstrate a simple greedy algorithm that can reliably recover a vector v ∈ R d from incomplete and inaccurate measurements x = Φv + e. Here Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close the gap between two major approaches to sparse recovery. It combines the speed and ease of implementation of the greedy methods with the strong guarantees of the convex programming methods.For any measurement matrix Φ that satisfies a Uniform Uncertainty Principle, ROMP recovers a signal v with O(n) nonzeros from its inaccurate measurements x in at most n iterations, where each iteration amounts to solving a Least Squares Problem. The noise level of the recovery is proportional to √ log n e 2 . In particular, if the error term e vanishes the reconstruction is exact.This stability result extends naturally to the very accurate recovery of approximately sparse signals.
ABSTRACT. We obtain an improved finite-sample guarantee on the linear convergence of stochastic gradient descent for smooth and strongly convex objectives, improving from a quadratic dependence on the conditioning (L/µ) 2 (where L is a bound on the smoothness and µ on the strong convexity) to a linear dependence on L/µ. Furthermore, we show how reweighting the sampling distribution (i.e. importance sampling) is necessary in order to further improve convergence, and obtain a linear dependence in the average smoothness, dominating previous results. We also discuss importance sampling for SGD more broadly and show how it can improve convergence also in other scenarios.Our results are based on a connection we make between SGD and the randomized Kaczmarz algorithm, which allows us to transfer ideas between the separate bodies of literature studying each of the two methods. In particular, we recast the randomized Kaczmarz algorithm as an instance of SGD, and apply our results to prove its exponential convergence, but to the solution of a weighted least squares problem rather than the original least squares problem. We then present a modified Kaczmarz algorithm with partially biased sampling which does converge to the original least squares solution with the same exponential convergence rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.